
CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(0.875 INCH BULK -- 448 pages -- 50# Thor)

THE EXPERT’S VOICE® IN .NET

Gordon Hogenson
Foreword by Stanley B. Lippman

Includes a quoted excerpt from “A Design Rationale for C++/CLI” by Herb Sutter

C++/CLI
The Visual C++ Language for .NET

Unlock the power of .NET with Microsoft’s new C++/CLI.

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

C++/CLI: The Visual C++ Language
for .NET
Dear Readers,

C++/CLI is a powerful new language that is easy to learn and a joy to use. This
book will guide you, the C++ programmer, through everything you need to
know to start writing programs in C++/CLI that target Microsoft’s .NET platform.
While C++/CLI is a dialect of C++ that extends ISO standard C++, it’s also an
ECMA standard itself and may soon have implementations on many platforms.
C++/CLI is the key that unlocks the .NET Framework for C++ programmers.

At Microsoft, I’m responsible for the documentation for Visual C++. In writ-
ing this book, I’m delighted to have had the opportunity to combine my love of
writing with my current area of focus. I’ve endeavored to give you a simple book
on a complex subject. I’ve always admired the ability of some experts to explain
concepts so simply that they make immediate sense. In that spirit, I have cho-
sen to demonstrate all the relevant concepts with simple code examples. I also
know that some readers learn the most from more detailed and realistic exam-
ples, so I’ve sprinkled some of those throughout the book as well.

C++/CLI is an excellent language for interoperability, letting you add .NET
features to your existing native applications. In order to do interop effectively,
you’ll need a solid grounding in the C++/CLI language, which is what the majori-
ty of this book provides. Once you’ve learned the language, this book will teach
you how to get started with interop. C++/CLI also is a great language for new
applications, particularly for games and other performance-intensive applica-
tions. Whatever your goal, I hope you enjoy using C++/CLI as much as I do.

Have fun,

Gordon Hogenson
GHogen@Microsoft.com

Shelve in Computer
Languages/C++

User level:
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

C+
+

/CLI
Hogenson

ISBN 1-59059-705-2

9 781590 597057

90000

6 89253 59705 7

The Visual C+
+

Language for .NET

Companion
eBook Available

Companion eBook

See last page for details
on $10 eBook version

RELATED TITLES

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

Join online discussions:

C++/CLI
The Visual C++ Language for .NET

■ ■ ■

Gordon Hogenson

Hogenson_705-2FRONT.fm Page i Saturday, October 28, 2006 7:24 PM

C++/CLI: The Visual C++ Language for .NET

Copyright © 2006 by Gordon Hogenson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-705-7

ISBN-10: 1-59059-705-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Ewan Buckingham, James Huddleston
Technical Reviewer: Damien Watkins
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Julie M. Smith
Copy Edit Manager: Nicole Flores
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert Stevens
Proofreader: Elizabeth Berry
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

Hogenson_705-2FRONT.fm Page ii Saturday, October 28, 2006 7:24 PM

To my parents, Arlin and Judy Hogenson, who built their character
growing up on the farms of the Great Plains and passed on the time-honored

virtues of personal responsibility, frugality, and integrity to their children.

Hogenson_705-2FRONT.fm Page iii Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page iv Saturday, October 28, 2006 7:24 PM

v

Contents at a Glance

Foreword by Stanley B. Lippman . xv

Foreword by Herb Sutter . xvii

About the Author . xxv

About the Technical Reviewer . xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 Introducing C++/CLI . 1

■CHAPTER 2 A Quick Tour of the C++/CLI Language Features 11

■CHAPTER 3 Building C++/CLI Programs for the .NET Developer Platform
with Visual C++ . 29

■CHAPTER 4 Object Semantics in C++/CLI . 43

■CHAPTER 5 Fundamental Types: Strings, Arrays, and Enums 75

■CHAPTER 6 Classes and Structs . 117

■CHAPTER 7 Features of a .NET Class . 173

■CHAPTER 8 Inheritance . 211

■CHAPTER 9 Interfaces . 235

■CHAPTER 10 Exceptions, Attributes, and Reflection . 259

■CHAPTER 11 Parameterized Functions and Types . 285

■CHAPTER 12 Interoperability . 317

■APPENDIX Quick Reference . 355

■INDEX . 377

Hogenson_705-2FRONT.fm Page v Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page vi Saturday, October 28, 2006 7:24 PM

vii

Contents

Foreword by Stanley B. Lippman . xv

Foreword by Herb Sutter . xvii

About the Author . xxv

About the Technical Reviewer . xxvii

Acknowledgments . xxix

Introduction . xxxi

■CHAPTER 1 Introducing C++/CLI . 1

Garbage Collection and Handles . 1

The /clr Compiler Option . 3

The Virtual Machine . 3
The Common Type System . 3

Reference Types and Value Types . 4

The CLI and the .NET Framework . 5

“Hello, World” . 5

Summary . 10

■CHAPTER 2 A Quick Tour of the C++/CLI Language Features 11

Primitive Types . 11

Aggregate Types . 12

Reference Classes . 14

Value Classes . 15

Enumeration Classes . 17

Interface Classes . 19

Elements Modeling the “has-a” Relationship . 21

Properties . 21

Delegates and Events . 23

Generics . 27

Summary . 28

Hogenson_705-2FRONT.fm Page vii Saturday, October 28, 2006 7:24 PM

viii ■C O N T E N T S

■CHAPTER 3 Building C++/CLI Programs for the .NET Developer
Platform with Visual C++ . 29

Targeting the .NET Developer Platform with Visual C++ 2005 29

Visual C++ 2005 Compilation Modes . 30

Safe Mode (/clr:safe Compiler Option) . 30

Pure Mode (/clr:pure Compiler Option) . 30

Mixed Mode (/clr Compiler Option) . 31

Managed Extensions Syntax (/clr:oldSyntax Compiler Option) 32

None of the Above . 32

Caveats When Upgrading Code to Visual C++ 2005 32

Architecture Dependence and 64-bit Programming 32

Assemblies and Modules . 33

The Assembly Manifest . 33

Viewing Metadata with ILDasm.exe . 34

The #using Directive . 37

Referencing Assemblies and Access Control . 39

Friend Assemblies . 39

Assembly Attributes . 40

The Linker and the Assembly Linker . 40

Resources and Assemblies . 41

Signed Assemblies . 41

Multifile Assemblies . 41

Summary . 41

■CHAPTER 4 Object Semantics in C++/CLI . 43

Object Semantics for Reference Types . 43

Object Semantics for Value Types . 44

Implications of the Unified Type System . 44

Implicit Boxing and Unboxing . 45

Stack vs. Heap Semantics . 47

Pitfalls of Delete and Stack Semantics. 51

The Unary % Operator and Tracking References 52

Dereferencing Handles . 54

Copy Constructors . 55

Lvalues, GC-lvalues, Rvalues, and GC-rvalues . 56

auto_handle . 58

Hogenson_705-2FRONT.fm Page viii Saturday, October 28, 2006 7:24 PM

■C O N T E N T S ix

Parameter Passing . 60

Passing Reference Types by Value . 63

Passing Value Types by Reference . 65

Temporary Handles . 66

Passing Value Types As Handles . 68

Summary of Parameter-Passing Semantics . 70

Do’s and Don’ts of Returning Values . 70

Summary . 73

■CHAPTER 5 Fundamental Types: Strings, Arrays, and Enums 75

Strings . 75

String Operators . 79

Comparing Strings . 80

Formatting Strings . 81

Numeric String Formatting . 82

StringBuilder . 84

Conversions Between Strings and Other Data Types 85

Input/Output . 86

Basic Output . 86

Out, Error, and In . 87

Basic Input with Console::ReadLine . 87

Reading and Writing Files . 87

Reading and Writing Strings . 89

System::String and Other I/O Systems . 90

Arrays . 92

Initializing. 93

Array Length . 95

Navigating Arrays . 97

Differences Between Native and Managed Arrays 100

Arrays As Parameters. 101

Copying an Array. 102

Managed Array Class Members . 103

Array Equality . 106

Parameter Arrays . 107

Arrays in Classes . 108

Beyond Arrays: ArrayList . 108

Hogenson_705-2FRONT.fm Page ix Saturday, October 28, 2006 7:24 PM

x ■C O N T E N T S

Enumerated Types . 110

The Enum Class . 111

Enumerated Types and Conversions . 112

The Underlying Type of an Enum . 112

The Flags Attribute . 113

Enum Values As Strings . 114

Summary . 116

■CHAPTER 6 Classes and Structs . 117

Constructors and Initialization . 118

Static Constructors . 119

Copy Constructors for Reference and Value Types 121

Literal Fields . 121

initonly Fields . 124

Const Correctness . 126

Properties, Events, and Operators . 127

Example: A Scrabble Game . 127

The this Pointer . 153

Access Levels for Classes . 156

Native and Managed Classes . 157

Using a Native Object in a Managed Type . 157

Class Destruction and Cleanup . 160

Finalizers . 161

Pitfalls of Finalizers. 168

Summary . 171

■CHAPTER 7 Features of a .NET Class . 173

Properties . 173

Using Indexed Properties . 177

Delegates and Events . 184

Asynchronous Delegates . 188

Events . 191

Event Receivers and Senders . 199

Using the EventArgs Class . 201

Reserved Names . 203

Operator Overloading . 203

Static Operators . 203

Conversion Operators and Casts . 206

Summary . 210

Hogenson_705-2FRONT.fm Page x Saturday, October 28, 2006 7:24 PM

■C O N T E N T S xi

■CHAPTER 8 Inheritance . 211

Name Collisions in Inheritance Hierarchies . 212

Using the new Keyword on Virtual Functions 214

Using the override Keyword on Virtual Methods 215

Abstract Classes . 219

Sealed Classes . 220

Abstract and Sealed . 221

Virtual Properties . 222

Special Member Functions and Inheritance . 225

Constructors . 226

Virtual Functions in the Constructor . 228

Destructors and Inheritance . 231

Finalizers and Inheritance . 232

Casting in Inheritance Hierarchies . 233

Summary . 234

■CHAPTER 9 Interfaces . 235

Interfaces vs. Abstract Classes . 235

Declaring Interfaces . 236

Interfaces Implementing Other Interfaces . 237

Interfaces with Properties and Events . 240

Interface Name Collisions . 240

Interfaces and Access Control . 244

Interfaces and Static Members . 245

Literals in Interfaces . 246

Commonly Used .NET Framework Interfaces . 246

IComparable . 246

IEnumerable and IEnumerator . 248

Interfaces and Dynamically Loaded Types . 255

Summary . 257

■CHAPTER 10 Exceptions, Attributes, and Reflection 259

Exceptions . 259

The Exception Hierarchy . 260

What’s in an Exception? . 260

Creating Exception Classes . 262

Using the Finally Block . 263

Dealing with Exceptions in Constructors . 265

Hogenson_705-2FRONT.fm Page xi Saturday, October 28, 2006 7:24 PM

xii ■C O N T E N T S

Throwing Nonexception Types . 266

Unsupported Features . 268

Exception-Handling Best Practices . 268

Exceptions and Errors from Native Code . 269

Attributes . 270

How Attributes Work. 270

The Attribute Class . 271

Attribute Parameters . 271

Some Useful Attributes. 271

Assembly and Module Attributes . 276

Creating Your Own Attributes . 277

Reflection . 279

Application Domains . 283

Summary . 284

■CHAPTER 11 Parameterized Functions and Types . 285

Generics . 285

Type Parameters . 285

Generic Functions . 286

Generic Types . 288

Generic Collections . 290

Using Constraints . 296

Interface Constraints . 296

Class Constraints . 297

Reference Types and Value Types As Type Parameters 298

The gcnew Constraint . 300

Value Type Constraints. 301

Reference Type Constraints. 303

Multiple Constraints . 303

.NET Framework Container Types . 304

Generic vs. Nongeneric Container Classes 304

Using the Collection Class Interfaces . 305

ArrayList. 305

Dictionaries . 308

Managed Templates . 309

Summary . 316

Hogenson_705-2FRONT.fm Page xii Saturday, October 28, 2006 7:24 PM

■C O N T E N T S xiii

■CHAPTER 12 Interoperability . 317

The Many Faces of Interop . 317

Interoperating with Other .NET Languages . 319

Using Native Libraries with Platform Invoke . 322

Data Marshaling . 327

Interop with COM . 328

Using Native Libraries Without P/Invoke . 329

Recompiling a Native Library As Managed Code 332

Interior Pointers . 339

Pinning Pointers . 340

Native Objects and Managed Objects . 341

Using a Managed Object in a Native Class 342

Using a Native Object in a Managed Type . 343

Native and Managed Entry Points . 347

How to Avoid Double Thunking . 348

Managed and Native Exceptions . 348

Interop with Structured Exceptions (__try/__except) 348

Interop with Win32 Error Codes . 351

Interop with C++ Exceptions. 352

Interop with COM HRESULTs . 354

Summary . 354

■APPENDIX Quick Reference . 355

Keywords and Contextual Keywords . 355

Whitespaced Keywords . 356

Keywords As Identifiers . 357

Detecting CLR Compilation . 358

XML Documentation . 359

Summary of Compilation Modes . 362

Syntax Summary . 363

■INDEX . 377

Hogenson_705-2FRONT.fm Page xiii Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page xiv Saturday, October 28, 2006 7:24 PM

xv

Foreword
By Stanley B. Lippman,
Former Architect, Visual C++

A person standing on the side of a river shouts to someone on the opposite bank: “How
do you get to the other side?” The second person replies: “You are on the other side.”

—Chris Gosden

C++/CLI is a binding of C++ to Microsoft’s .NET programming environment. It integrates ISO
C++ with the Unified Type System (UTS) of the Common Language Infrastructure (CLI). It supports
both source-level and binary interoperability between native and managed C++. As the Gosden
quote suggests, it is how one gets to the other side, regardless of where you happen to be standing.
The actual details of how you do this are covered in Gordon’s fine text.

In primitive societies and adolescent fantasy novels, such as The Lord of the Rings (which,
along with Remembrance of Things Past, is one of my favorite books), names have a kind of
magical aura to them—they need to be handled with extreme care and protected. The same
holds true in computer science, apparently—or at least within Microsoft. Although you hold in
your hand the first book devoted solely to C++/CLI, I couldn’t for the life of me find any specific
reference to C++/CLI in the Visual Studio 2005 release—at least not in the Visual C++ IDE, in
order to open a C++/CLI project, or in the “What’s New” section of the documentation. This
whole notion of binding C++ to .NET has a sort of fantasy aspect to it that has clung to it since
the original Managed Extensions to C++ in the Visual Studio .NET release of 2001. C++/CLI is the
noncompatible and more elegant replacement for the Managed Extensions. It is how we program
.NET using what the book’s subtitle calls “the Visual C++ Language for .NET.” That’s what
Gordon’s book will teach you how to do.

As Gordon states in his introduction, C++/CLI represents an evolution of C++. This does
not, of course, imply that C++/CLI is a better language than C++; rather, C++/CLI is better adapted
to the current and future computing environment that we work in. If you are a Visual C++
programmer with legacy “native applications” and need to move or extend these applications
to .NET, C++/CLI is an essential tool for your survival, and Gordon’s text is an essential first step
to mastering this tool.

Hogenson_705-2FRONT.fm Page xv Saturday, October 28, 2006 7:24 PM

xvi ■C O N T E N T S

An aspect of evolution is an increase in structural complexity, and this, too, is reflected in
C++/CLI: knowing C++ may or may not be a help in understanding C++/CLI! For example,
there is no such thing as a destructor in .NET, so although the syntax resembles that of the
native C++ destructor, its behavior is oddly counterintuitive: you simply can’t fully understand its
operation by its analogous form. And this is where Gordon’s text becomes invaluable both as a tuto-
rial and a desktop reference. It is for this reason that I highly recommend it.

Hogenson_705-2FRONT.fm Page xvi Saturday, October 28, 2006 7:24 PM

xvii

Foreword
By Herb Sutter, Architect

A Design Rationale for C++/CLI
—Excerpted from "A Design Rationale for C++/CLI" by Herb Sutter. (Full text available
online at http://www.gotw.ca/publications/C++CLIRationale.pdf.)

1 Overview

A multiplicity of libraries, runtime environments, and development environments are
essential to support the range of C++ applications. This view guided the design of C++
as early as 1987; in fact, it is older yet. Its roots are in the view of C++ as a general-
purpose language.

—B. Stroustrup (Design and Evolution of C++,
Addison-Wesley Professional, 1994, p. 168))

C++/CLI was created to enable C++ use on a major runtime environment, ISO CLI (the standard-
ized subset of .NET).

A technology like C++/CLI is essential to C++’s continued success on Windows in particular.
CLI libraries are the basis for many of the new technologies on the Windows platform, including
the WinFX class library shipping with Windows Vista, which offers over 10,000 CLI classes for
everything from web service programming (Communication Foundation, WCF) to the new 3D
graphics subsystem (Presentation Foundation, WPF). Languages that do not support CLI program-
ming have no direct access to such libraries, and programmers who want to use those features
are forced to use one of the 20 or so other languages that do support CLI development. Languages
that support CLI include COBOL, C#, Eiffel, Java, Mercury, Perl, Python, and others; at least two
of these have standardized language-level bindings.

C++/CLI’s mission is to provide direct access for C++ programmers to use existing CLI libraries
and create new ones, with little or no performance overhead, with the minimum amount of
extra notation, and with full ISO C++ compatibility.

Hogenson_705-2FRONT.fm Page xvii Saturday, October 28, 2006 7:24 PM

xviii ■C O N T E N T S

1.1 Key Goals

• Enable C++ to be a first-class language for CLI programming.

• Support important CLI features, at minimum those required for a CLS consumer and
CLS extender: CLI defines a Common Language Specification (CLS) that specifies the
subsets of CLI that a language is expected to support to be minimally functional for
consuming and/or authoring CLI libraries.

• Enable C++ to be a systems programming language on CLI: a key existing strength of
C++ is as a systems programming language, so extend this to CLI by leaving no room
for a CLI language lower than C++(besides ILASM).

• Use the fewest possible extensions.

• Require zero use of extensions to compile ISO C++ code to run on CLI: C++/CLI requires
compilers to make ISO C++ code “just work”—no source code changes or extensions
are needed to compile C++ code to execute on CLI, or to make calls between code
compiled “normally” and code compiled to CLI instructions.

• Require few or no extensions to consume existing CLI types: to use existing CLI types,
a C++ programmer can ignore nearly all C++/CLI features and typically writes a sprinkling
of gcnew and ^. Most C++/CLI extensions are used only when authoring new CLI types.

• Use pure conforming extensions that do not change the meaning of existing ISO C++
programs and do not conflict with ISO C++ or with C++0x evolution: this was achieved
nearly perfectly, including for macros.

• Be as orthogonal as possible.

• Observe the principle of least surprise: if feature X works on C++ types, it should also
seamlessly work on CLI types, and vice versa. This was mostly achieved, notably in the
case of templates, destructors, and other C++ features that do work seamlessly on CLI
types; for example, a CLI type can be templated and/or be used to instantiate a template,
and a CLI generic can match a template parameter.

Some unifications were left for the future; for example, a contemplated extension that the
C++/CLI design deliberately leaves room for is to use new and * to (semantically) allocate CLI
types on the C++ heap, making them directly usable with existing C++ template libraries, and
to use gcnew and ̂ to (semantically) allocate C++ types on the CLI heap. Note that this would be
highly problematic if C++/CLI had not used a separate gcnew operator and ^ declarator to keep
CLI features out of the way of ISO C++.

Hogenson_705-2FRONT.fm Page xviii Saturday, October 28, 2006 7:24 PM

■C O N T E N T S xix

1.2 Basic Design Forces

Four main programming model design forces are mentioned repeatedly in this paper:

1. It is necessary to add language support for a key feature that semantically cannot be
expressed using the rest of the language and/or must be known to the compiler.

Classes can represent almost all the concepts we need. . . . Only if the library route is
genuinely infeasible should the language extension route be followed.

—B. Stroustrup (Design and Evolution of C++, p. 181)

In particular, a feature that unavoidably requires special code generation must be known
to the compiler, and nearly all CLI features require special code generation. Many CLI features
also require semantics that cannot be expressed in C++. Libraries are unquestionably preferable
wherever possible, but either of these requirements rules out a library solution. Note that language
support remains necessary even if the language designer smoothly tries to slide in a language
feature dressed in library’s clothing (i.e., by choosing a deceptively library-like syntax). For
example, instead of

property int x; // A: C++/CLI syntax

the C++/CLI design could instead have used (among many other alternatives) a syntax like

property<int> x; // B: an alternative library-like syntax

and some people might have been mollified, either because they looked no further and thought
that it really was a library, or because they knew it wasn’t a library but were satisfied that it at
least looked like one. But this difference is entirely superficial, and nothing has really changed—
it’s still a language feature and a language extension to C++, only now a deceitful one masquer-
ading as a library (which is somewhere between a fib and a bald-faced lie, depending on your
general sympathy for magical libraries and/or grammar extensions that look like libraries).

In general, even if a feature is given library-like syntax, it is still not a true library feature when

• the name is recognized by the compiler and given special meaning (e.g., it’s in the
language grammar, or it’s a specially recognized type) and/or

• the implementation is “magical.”

Either of these make it something no user-defined library type could be. Note that, in the
case of surfacing CLI properties in the language, at least one of these must be true even if prop-
erties had been exposed using syntax like B.

Hogenson_705-2FRONT.fm Page xix Saturday, October 28, 2006 7:24 PM

xx ■C O N T E N T S

Therefore, choosing a syntax like B would not change anything about the technical fact
of language extension, but only the political perception. This approach amounts to dressing up
a language feature with library-like syntax that pretends it’s something that it can’t be. C++’s
tradition is to avoid magic libraries and has the goal that the C++ standard library should be
implementable in C++ without compiler collusion, although it allows for some functions to be
intrinsics known to the compiler or processor. C++/CLI prefers to follow C++’s tradition, and it
uses magical types or functions only in four isolated cases: cli::array, cli::interior_ptr,
cli::pin_ptr, and cli::safe_cast. These four can be viewed as intrinsics—their implementations
are provided by the CLI runtime environment and the names are recognized by the compiler as
tags for those CLI runtime facilities.

2. It is important not only to hide unnecessary differences, but also to expose essential
differences.

I try to make significant operations highly visible.

—B. Stroustrup (Design and Evolution of C++, p. 119)

First, an unnecessary distinction is one where the language adds a feature or different
syntax to make something look or be spelled differently, when the difference is not material and
could have been “papered over” in the language while still preserving correct semantics and
performance. For example, CLI reference types can never be physically allocated on the stack,
but C++ stack semantics are very powerful, and there is no reason not to allow the lifetime
semantics of allocating an instance of a reference type R on the stack and leveraging C++’s auto-
matic destructor call semantics. C++/CLI can, and therefore should, safely paper over this
difference and allow stack-based semantics for reference type objects, thus avoiding exposing
an unnecessary distinction. Consider this code for a reference type R:

void f()
{
 R r;// OK, conceptually allocates the R on the stack
 r.SomeFunc(); // OK, use value semantics
 ...
} // destroy r here

In the programming model, r is on the stack and has normal C++ stack-based semantics.
Physically, the compiler emits something like the following:

// f, as generated by the compiler
void f()
{
 R^ r = gcnew R; // actually allocated on the CLI heap
 r->SomeFunc();// actually uses indirection
 ...
 delete r;// destroy r here (memory is reclaimed later)
}

Hogenson_705-2FRONT.fm Page xx Saturday, October 28, 2006 7:24 PM

■C O N T E N T S xxi

Second, it is equally important to avoid obscuring essential differences, specifically not try
to “paper over” a difference that actually matters but where the language fails to add a feature
or distinct syntax.

For example, although CLI object references are similar to pointers (e.g., they are an indi-
rection to an object), they are nevertheless semantically not the same because they do not support
all the operations that pointers support (e.g., they do not support pointer arithmetic, stable
values, or reliable comparison). Pretending that they are the same abstraction, when they are
not and cannot be, causes much grief. One of the main flaws in the Managed Extensions design
is that it tried to reduce the number of extensions to C++ by reusing the * declarator, where T*
would implicitly mean different things depending the type of T—but three different and semanti-
cally incompatible things, lurking together under a single syntax.

The road to unsound language design is paved with good intentions, among them the
papering over of essential differences.

3. Some extensions actively help avoid getting in the way of ISO C++ and C++0x evolution.

Any compatibility requirements imply some ugliness.

—B. Stroustrup (Design and Evolution of C++, p. 198)

A real and important benefit of extensions is that using an extension that the ISO C++ stan-
dards committee (WG21) has stated it does not like and is not interested in can be the best way
to stay out of the way of C++0x evolution, and in several cases this was done explicitly at WG21’s
direction.

For example, consider the extended for loop syntax: C++/CLI stayed with the syntax for
each(T t in c) after consulting the WG21 evolution working group at the Sydney meeting
in March 2004 and other meetings, where EWG gave the feedback that they were interested in
such a feature but they disliked both the for each and in syntax and were highly likely never to
use it, and so directed C++/CLI to use the undesirable syntax in order to stay out of C++0x’s
way. (The liaisons noted that if in the future WG21 ever adopts a similar feature, then C++/CLI
would want to drop its syntax in favor of the WG21-adopted syntax; in general, C++/CLI aims to
track C++0x.)

Using an extension that WG21 might be interested in, or not using an extension at all but
adding to the semantics of an existing C++ construct, is liable to interfere with C++0x evolution
by accidentally constraining it. For another example, consider C++/CLI’s decision to add the
gcnew operator and the ^ declarator. . . . Consider just the compatibility issue: by adding an
operator and a declarator that are highly likely never to be used by ISO C++, C++/CLI avoids
conflict with future C++ evolution (besides making it clear that these operations have nothing
to do with the normal C++ heap). If C++/CLI had instead specified a new (gc)or new (cli)
“placement new” as its syntax for allocation on the CLI heap, that choice could have conflicted
with C++0x evolution that might want to provide additional forms of placement new. And, of
course, using a placement syntax could and would also conflict with existing code that might
already use these forms of placement new—in particular, new (gc) is already used with the
popular Boehm collector.

Hogenson_705-2FRONT.fm Page xxi Saturday, October 28, 2006 7:24 PM

xxii ■C O N T E N T S

4. Users rely heavily on keywords, but that doesn’t mean the keywords have to be
reserved words.

My experience is that people are addicted to keywords for introducing concepts to the
point where a concept that doesn’t have its own keyword is surprisingly hard to teach.
This effect is more important and deep-rooted than people’s vocally expressed dislike for
new keywords. Given a choice and time to consider, people invariably choose the new
keyword over a clever workaround.

—B. Stroustrup (Design and Evolution of C++, p. 119)

When a language feature is necessary, programmers strongly prefer keywords. Normally,
all C++ keywords are also reserved words, and taking a new one would break code that is already
using that word as an identifier (e.g., as a type or variable name).

C++/CLI avoids adding reserved words so as to preserve the goal of having pure extensions,
but it also recognizes that programmers expect keywords. C++/CLI balances these requirements by
adding keywords where most are not reserved words and so do not conflict with user identifiers.

For a related discussion, see also my blog article “C++/CLI Keywords: Under the hood”
(November 23, 2003).

• Spaced keywords: These are reserved words, but cannot conflict with any identifiers or
macros that a user may write because they include embedded whitespace (e.g., ref class).

• Contextual keywords: These are special identifiers instead of reserved words. Three tech-
niques were used:

1. Some do not conflict with identifiers at all because they are placed at a position in
the grammar where no identifier can appear (e.g., sealed).

2. Others can appear in the same grammar position as a user identifier, but conflict is
avoided by using a different grammar production or a semantic disambiguation
rule that favors the ISO C++ meaning (e.g., property, generic), which can be infor-
mally described as the rule “If it can be a normal identifier, it is.”

3. Four “library-like” identifiers are considered keywords when name lookup finds the
special marker types in namespace cli (e.g., pin_ptr).

Note these make life harder for compiler writers, but that was strongly preferred in order to
achieve the dual goals of retaining near-perfect ISO C++ compatibility by sticking to pure exten-
sions and also being responsive to the widespread programmer complaints about underscores.

1.3 Previous Effort: Managed Extensions

C++/CLI is the second publicly available design to support CLI programming in C++. The
first attempt was Microsoft’s proprietary Managed Extensions to C++ (informally known as
“Managed C++”), which was shipped in two releases of Visual C++ (2002 and 2003) and continues
to be supported in deprecated mode in Visual C++ 2005.

Hogenson_705-2FRONT.fm Page xxii Saturday, October 28, 2006 7:24 PM

■C O N T E N T S xxiii

Because the Managed Extensions design deliberately placed a high priority on C++ compat-
ibility, it did two things that were well-intentioned but that programmers objected to:

• The Managed Extensions wanted to introduce as few language extensions as possible,
and ended up reusing too much existing but inappropriate C++ notation (e.g., * for
pointers CLI references). This caused serious problems where it obscured essential
differences, and the design for overloaded syntaxes like * was both technically unsound
and confusing to use.

• The Managed Extensions scrupulously used names that the C++ standard reserves for
C++ implementations, notably keywords that begin with a double underscore (e.g.,
__gc). This caused unexpectedly strong complaints from programmers, who made it
clear that they hated writing double underscores for language features.

Many C++ programmers tried hard to use these features, and most failed. Having the Managed
Extensions turned out to be not significantly better for C++ than having no CLI support at all.
However, the Managed Extensions did generate much direct real-world user experience with a
shipping product about what kinds of CLI support did and didn’t work, and why; and this expe-
rience directly informed C++/CLI.

Hogenson_705-2FRONT.fm Page xxiii Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page xxiv Saturday, October 28, 2006 7:24 PM

0caa2832af4d32f2887b7e4351ab0f49

xxv

About the Author

■GORDON HOGENSON grew up in Fairbanks, Alaska, and retains the inde-
pendent spirit and love of nature he learned there. Torn between a love
of writing and a love of science, he wrote a fantasy novel in high school
called Phalshazhaln and then went on to study chemistry at Harvey Mudd
College, intern in chemical physics at the University of Oregon, and work
toward a Ph.D. in physical chemistry at the University of Washington,
when he published a paper with William P. Reinhardt in the Journal of
Chemical Physics on computational methods combining quantum

mechanics and thermodynamics, as well as an article on a meditation technique for the first
issue of The Resonance Project, a journal for the psychedelic subculture.

Supported by fellowships from Connie Ringold and the U.S. Department of Energy, he
studied quantum liquids and pursued attempts to bring together diverse ideas more appropriate
for a natural philosopher than a modern scientist. He spent his free time studying the contro-
versies at the edges of science and philosophy. In a moment of extreme distraction from his
Ph.D. project, he even tried to learn ancient Greek and memorize parts of Homer’s The Iliad. He
later used his JCP paper as a master’s thesis during his escape from the highly specialized world
of academic science. He returned to more practical concerns in 1997 and began work at Microsoft
testing Visual J++, C#, and C++, and later started work on software documentation, where he
currently enjoys managing technical writing projects. Gordon met his wife, Jeni, while they
searched the night sky near Mt. Rainier for signs of life beyond Earth as members of CSETI, an
organization devoted to furthering our understanding of extraterrestrial life. His current pastimes
include raising goats on his farm near Duvall, Washington, planning a permaculture garden,
and dreaming of self-sufficiency on the land.

Hogenson_705-2FRONT.fm Page xxv Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page xxvi Saturday, October 28, 2006 7:24 PM

xxvii

About the Technical Reviewer

■DAMIEN WATKINS is a program manager on the Visual C++ team at
Microsoft. His main area of interest is the design and implementation
of component architectures. His first book, Programming in the .NET
Environment (Addison-Wesley, 2003), coauthored with Mark Hammond
and Brad Abrams, describes the architecture and goals of the .NET
Framework. Prior to joining the Visual C++ Team, Damien was a member
of the External Research Office at Microsoft Research Cambridge. Damien
has presented tutorials, seminars, and workshops on COM/DCOM,

CORBA, and the .NET Framework at numerous events, including ECOOP 2004, OOPSLA 2003,
OOPSLA 2002, SIGCSE 2002, and the Microsoft Research Faculty Summit 2001.

Hogenson_705-2FRONT.fm Page xxvii Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page xxviii Saturday, October 28, 2006 7:24 PM

xxix

Acknowledgments

This book would never have been possible had it not been for the constant support of Jeni, my
lovely wife. I am very grateful to her for her patience with me during the project and for gener-
ally being such an inspiring presence in my life. I also want to heartily thank Damien Watkins,
whose support, tough technical editing, humor, and encouragement all helped this text come
together. I was also fortunate enough to have a technical review by Arjun Bijanki of the Visual
C++ QA team, whose detailed knowledge of the C++/CLI language helped make the text much
more accurate. The text also benefited greatly from feedback from many Microsoft employees
who devoted their time and attention to pointing out an early draft’s many flaws: Martin Chisholm,
who printed and read the text very carefully while on a bike trip; John SvitaK, whose attention
to detail really helped improve the polish; Kirill Kobelev, who pointed out errors and omissions
in the radioactivity example; Thomas Petchel, who found several programming errors and had
many other good suggestions; Yves Dolce, whose familiarity with developer problems helped
make the book more practical; Peter-Michael Osera, who pointed out many subtleties and asked
very good questions; Ron Pihlgren, who pointed out misleading statements and questionable
assertions in Chapters 3 and 12; Bob Davidson, who despite his demanding schedule managed
to provide feedback on the book; Ann Beebe, who allowed me to have a flexible work schedule
so I could work on the text; and Chuck Bell, who had some great ideas on the exceptions discussion
of Chapter 12 . I also want to thank and Ewan Buckingham, Julie Smith, and Ami Knox at Apress for
their patience and help getting this into print, and finally, Stan Lippman, whose idea this was
and without whom none of this would ever have happened.

Hogenson_705-2FRONT.fm Page xxix Saturday, October 28, 2006 7:24 PM

Hogenson_705-2FRONT.fm Page xxx Saturday, October 28, 2006 7:24 PM

xxxi

Introduction

Thank you for picking up this book. In it I present the new C++/CLI extensions to the C++
computer programming language, a significant development in the long history of the C and
C++ programming languages.

Why extend C++? C++ has evolved over many years; it is used by millions of developers
worldwide. The nature of C++ has been to grow as programming paradigms evolve. After all,
it was the desire to extend the C language to support object-oriented concepts that prompted
Bjarne Stroustrup and his colleagues at Bell Labs to develop “C with classes.” Many of the new
language features that have come along have been reflected in the C++ language, such as templates,
runtime type information, and so on; they have enhanced the richness (and complexity) of the
language. The features added to C++ by C++/CLI are no different. C++/CLI provides a new set
of extensions to the C++ language to support programming concepts such as component-based
software development, garbage collection, and interoperability with other languages that run
on a common virtual machine, along with other useful features.

The CLI, or Common Language Infrastructure, is a standard adopted by ECMA International.
The CLI defines a virtual machine and enables rich functionality in languages that target the
virtual machine, as well as a framework of libraries that provide additional support for the
fundamentals of programming against the CLI virtual machine. Collectively, these libraries and
the platform constitute the infrastructure of the CLI. It’s a common language infrastructure
because a wide variety of languages can target that infrastructure.

The name “C++/CLI” refers to a standard that describes extensions to the C++ language
that allow C++ programmers to program against a CLI virtual machine.

Microsoft’s implementation of the CLI standard is called the CLR, or common language
runtime, or the .NET Developer Platform (NDP). The libraries Microsoft provides that implement
the CLI standard are collectively known as the .NET Framework, although the .NET Framework
also includes other libraries that are not part of the CLI standard. There are several other imple-
mentations of the CLI, including the .NET Compact Framework (http://msdn.microsoft.com/
netframework/programming/netcf), the Mono Project (http://www.mono-project.com), and
dotGNU Portable.NET (http://dotgnu.org). Visual C++ 2005 is the first release of Visual C++
that supports C++/CLI.

First, let’s address the issue of what the term “C++/CLI” means in the technical sense.
C++ is a well-known language. While some might quibble over standards conformance, C++
is essentially the language design captured by the ANSI/ISO standard in the late 1990s. Purists
will say that C++/CLI is a set of language bindings to the CLI standard, not a language in and of
itself. ECMA has adopted C++/CLI as a standard itself, and it is in the process of being submitted
to the appropriate ISO working group. The C++/CLI language is an approximate superset of the
C++ language, so if you drop all the support for the CLI from the language, you’re left with C++.
This means that almost any C++ program is automatically supported as a C++/CLI program,
just one that doesn’t refer to any of the additional functionality provided by the CLI.

Hogenson_705-2FRONT.fm Page xxxi Saturday, October 28, 2006 7:24 PM

xxxii ■I N T R O D U CT I O N

Why C++/CLI?
C++/CLI was created by Microsoft to be a more friendly programming language than its
predecessor, Managed Extensions for C++. Microsoft had created the CLR, and the C++ team at
Microsoft had devised a syntax that provided C++ programmers with a way to target the CLR.
The first release of Visual Studio to support the CLR was Visual Studio .NET 2002. The syntax
that was provided with Visual Studio .NET 2002 was constrained by the desire to adhere as
much as possible to the existing C++ standard, the ISO C++ Standard. According to this stan-
dard, any extensions to a language had to conform to the rules for language extensions—among
other constraints, this meant keywords had to begin with a double underscore (__). Thus, Managed
Extensions for C++ provided a very clumsy syntax for targeting the CLR. In order to create a
“managed” pointer (one that refers to an object that is garbage collected), one used syntax
as follows:

 int __gc * ptr;

The managed pointers were referred to as “__gc pointers.” Similarly, in order to declare a
managed class, one used the __gc keyword as a modifier:

__gc class C { ... };

and to declare an interface (a concept that does not exist as a specific language feature in C++),
one had to use the syntax

__interface I { ... };

There were other cases of keywords added with double underscores as well. All in all, the
syntax was cumbersome.

And not just because of the double underscores, but also because Managed Extensions for
C++ did not provide natural support for several key concepts of the CLR, such as properties,
events, automatic boxing, and so on. All this meant that C++ programmers did not enjoy
programming in Managed Extensions for C++.

Programming should be fun. Language is more than just a utilitarian concept. After all,
many people spend their entire day programming. Why should they hobble along with a diffi-
cult extension when they could be using a clean, crisp language that makes programming easy
and fun? The C++ team at Microsoft recognized that in order to make C++ programming enjoy-
able and aesthetically pleasing, as well as to take full advantage of the CLR, the syntax had to
change. And that meant taking the radical step of departing from the ISO C++ Standard.

However, Microsoft had made the decision to work through standards bodies, and if it was
going to depart from the ISO C++ Standard, rather than being “nonstandard,” it was felt that a
new standard was needed. The C++/CLI standard was born.

The new language was designed with ease of use in mind and was intended to be a breath
of fresh air. It should be a great relief to anyone who has tried to use Managed Extensions for C++.

Unlike Managed Extensions for C++, C++/CLI is designed to be a general-purpose program-
ming language. It was not designed just for those who want to preserve an existing native code
base and add a bit of managed code, although it’s great for that and use of C++/CLI for such
interoperability scenarios will certainly be a major way in which the language is used. The
designers of C++/CLI had the advantage of looking at what works and what doesn’t in the C#
language, and planning the design of C++/CLI accordingly. For example, C++/CLI provides
better and more predictable object cleanup more easily in the language. The bottom line is that

Hogenson_705-2FRONT.fm Page xxxii Saturday, October 28, 2006 7:24 PM

■I N T R O D U C T I O N xxxiii

now C++/CLI may well be the language of choice for programming against the CLI platform, for
new applications as well as for extending existing native code bases.

About This Book
The purpose of this book is to show you the basics of the C++/CLI language. This book is not a
general introduction to Visual C++ 2005; there are other features in Visual C++ 2005 that this
book does not cover, such as the secure C runtime functions. I’d like this book to be used as a
handy desktop reference, so if you have a question about how, say, an array is declared or how
a ref class behaves, you can easily refer to this book. I am going to assume that you already
“know C++,” although the truth is that very few people know all there is to know about C++.
However, I am assuming you know about as much as the majority of people who program in
C++. I am assuming that you want to build on this existing knowledge, and may need the occa-
sional refresher on the ins and outs of C++ as well. I do not assume any knowledge of the CLR,
so if you have knowledge (perhaps from C# or Visual Basic .NET), you’ll find a little bit of review.
This book should be useful to professional developers getting started with C++/CLI, as well as
to students, academic faculty, and hobbyists who want to learn the new language. In this text,
we won’t cover features of C++ that are not specifically C++/CLI extensions, even though C++/CLI
does allow the use of nearly all of the C++ language. There are many good references available
for classic C++.1

Also, this book is an introductory book. There are many complexities that are not fully
explained, especially in dealing with interoperability between native C++ and C++/CLI. If you
want to move on to more advanced material after reading this book, you may want to read
Expert C++/CLI by Marcus Heege (Apress, forthcoming), and if you want more information
about using the .NET Framework in C++/CLI, you should read Pro Visual C++/CLI and the
.NET 2.0 Platform by Stephen R.G. Fraser (Apress, 2006).

One of the principles with which this book is written is that, to paraphrase Einstein, expla-
nations should be as simple as possible, but no simpler. I shall try to give many code examples
that can be understood at a glance. I hope you won’t need to spend a long time poring over the
text and code in this book, but that you can absorb the main point of each code example and
apply it to your own project. But, like any principle, there are times when it must be violated, so
this book also contains more extended code examples that are intended to give you a better
feeling for how the language is used in more realistic programs and get you thinking about how
to solve problems using C++/CLI.

In Chapter 1, I introduce some of the basic concepts behind the new language, culminating
in a look at the classic “Hello, World” program in C++/CLI. Following that, you’ll get a quick
tour of the new language, using an example involving a simulation of radioactive decay to motivate
the tour. You’ll then look in Chapter 3 at some of the infrastructure outside of the programming
language itself that you’ll want to know about to program effectively in this environment, and
in Chapter 4 you’ll look at object semantics in the new language, as well as mixing native and
managed objects. Chapter 5 covers the new C++/CLI features, starting with features of the CLI
itself such as the String type and input/output, followed by enums and arrays. Chapter 6 describes
classes and structs in C++/CLI. The text will then continue its treatment of classes in Chapter 7

1. Such as C++ Primer, Fourth Edition by Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo (Addison-
Wesley, 2005) and The C++ Programming Language, Special Third Edition by Bjarne Stroustrup
(Addison-Wesley, 2000).

Hogenson_705-2FRONT.fm Page xxxiii Saturday, October 28, 2006 7:24 PM

xxxiv ■I N T R O D U CT I O N

by looking at new elements of a class, such as properties, events, and operators. Chapter 8
describes inheritance in C++/CLI. In Chapter 9, I discuss interface classes, which provide an
alternative to traditional multiple inheritance. You’ll then have a chapter on other language
features that covers exception handling, which is the fundamental mechanism for error handling
in the CLR; attributes, which provide metadata for a type; and reflection, the C++/CLI equiva-
lent of runtime type information. This is followed by a chapter on parameterized types and
collection classes, and finally, I round out your introduction to C++/CLI in Chapter 12 with a
closer look at the features of the language supporting interoperability with existing native C++
code and other .NET languages. Throughout the text, I encourage you to experiment with the
code examples and work on your own programs as well as those in the text. Example code can
be found online at http://www.apress.com, and you can try out C++/CLI for yourself for free by
downloading Visual C++ Express from http://msdn.microsoft.com/vstudio/express. You can
also visit my blog at http://blogs.msdn.com. I hope you learn much and enjoy reading this book.

Hogenson_705-2FRONT.fm Page xxxiv Saturday, October 28, 2006 7:24 PM

1

■ ■ ■

C H A P T E R 1

Introducing C++/CLI

This chapter introduces the C++/CLI language extensions to C++ and shows you the classic
“Hello, World” example in C++/CLI. You’ll learn just enough about the runtime environment
that executes your C++/CLI programs to get started with your first program. You’ll also learn
some of the features available in that environment, including access to the .NET Framework
(or the CLI class libraries), the common type system, and other helpful features such as
garbage collection.

Garbage Collection and Handles
One convenience of a managed language is garbage collection—that you no longer have to
keep track of all the objects you create. Your C++/CLI objects will be collected and destroyed by
a background process called the garbage collector. Think about this analogy for a minute. When
civilization in an area reaches a certain point, your household waste is collected conveniently
at the curbside for burial, incineration, or recycling. As important as garbage collection is, the
implications or benefits of the common language runtime (CLR) don’t stop at garbage collection.
In this analogy, a civilized environment has other implications as well. There is a government to
contend with, which has its benefits and drawbacks. Taxes might be higher, but you get all
kinds of services such as telephones, electricity, and a reliable water supply. Similarly, for your
program, you might pay a performance penalty; however, you get a lot in return in terms of
functionality that makes life easier as a programmer.

Remember that C++/CLI, unlike other languages that also target the CLR, doesn’t replace
standard C++ functionality. C++/CLI not only adds the ability to create managed objects, but
also allows the creation of C++ objects, called native objects. But since both entities exist in the
language, how are you to distinguish them? The answer is that instead of using pointers, you
use tracking handles. Tracking handles are very similar to pointers, but they behave differently
since they refer to managed objects, not native objects.

There are two entirely separate families of types in C++/CLI—the native type system exists
fully intact alongside the managed type system. Objects or instances of native types can coexist
in the same application with objects and instances of managed types. Whether a type is native
or managed depends on whether it is declared with C++ syntax or with the C++/CLI syntax for
managed types. Chapter 2 covers this in detail, but just to get started, instead of class, ref
class is used for a managed reference class.

Hogenson_705-2C01.fm Page 1 Friday, October 13, 2006 2:11 PM

2 C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I

class N { ... };
ref class R { ... };
N* n = new N; // standard C++ pointer to an object
R^ r = gcnew R; // C++/CLI handle to an object

Recall that native objects, when created with the new statement (or malloc), are allocated
on a large pool of memory called the heap. It’s important to understand that there are actually
two heaps in a C++/CLI application, the native heap and the managed heap. The native heap is
used when you use the new statement, as usual, to create instances of your native classes. As in
standard C++, you must explicitly manage the lifetime of the objects on this heap yourself. The
managed heap is a separate pool of memory that is managed by the garbage collector. Instead
of a normal pointer into the native heap, you use a tracking handle to point to objects in the
managed heap. A tracking handle is expressed using the caret symbol (^), instead of the asterisk (*).
Also, instead of new, the keyword gcnew is used. As you might have guessed, the “gc” stands for
“garbage collected.”

The reason these new pointer-like entities are called tracking handles is that in addition to
freeing up unusable objects, the garbage collector also moves objects around in memory in
order to organize the heap so that its operations can be carried out more efficiently. This is
called heap compaction. This means that, unlike a native pointer, a tracking handle’s address
that tracks its object may change in the course of the program. For this reason, you don’t normally
access the address of a tracking handle. The runtime will update the address of any tracking
handles if the garbage collector moves your object. From this point on, for brevity, I’ll refer to
them simply as handles.

There are certainly many parallels between pointers and handles; however, you must not
assume that a handle is simply a “managed pointer.” There are some subtle differences
between the two, as you’ll see in Chapter 4.

In general, the managed, garbage-collected environment makes for less detailed memory
management work for developers, who no longer have to worry about making sure they free all
allocated memory. Some might object that this makes programmers lazy. I recall that in Plato’s
dialogue Critias, the same argument arose among the ancient Egyptians over the Egyptian god
Thoth’s gift to mankind, the gift of writing. Some scholars at the time said that this was surely
the end of memory, for the crutch of the written word would surely replace the need for memo-
rization. All I can say is that some people’s response to progress hasn’t changed much in 6,000
years.

I’ll refer to the C++ features that predate the C++/CLI extensions as classic C++. I’ll use the
word “managed” to describe anything governed by the CLR (or another implementation of
the CLI): managed code, managed types, managed pointers, and so on. However, the term
managed C++ should not be used to describe the new language syntax. With a few exceptions,
every feature of classic C++ is also a feature of C++/CLI, so it’s not true to say that C++/CLI is
only a managed language. The word “native” refers to the unmanaged world, hence I use the
terms native types, native compilation, and so on. The term native C++ could be used to refer
to the C++ language without the extensions, but since the new language supports both managed
and native types, I prefer the term classic C++.

Hogenson_705-2C01.fm Page 2 Friday, October 13, 2006 2:11 PM

C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I 3

The /clr Compiler Option
If you use Visual C++ 2005, you have to let the compiler know that you are targeting the CLR
(and therefore want C++/CLI standard extensions enabled). You do this by using the /clr
compiler option (or one of its variants, as discussed in Chapter 3). In the Visual C++ develop-
ment environment, you would choose the appropriate type of project, and the option would be
set appropriately for that project type. If you need to change the option later, you can set the
Common Language Runtime support option in the General tab of the Project Properties dialog.

The Virtual Machine
C++/CLI applications execute in the context of the CLR. The CLR implements a virtual machine,
which is a software implementation of an idealized, abstract execution environment. Programs
that run on the CLR virtual machine use a language known as the Common Intermediate
Language (CIL). Microsoft’s implementation of CIL is often referred to as MSIL, or just plain IL.
The CLR relies on a JIT (just-in-time) compiler to translate the CIL code on demand into
machine code in order to execute the program.

The CLR virtual machine is Microsoft’s implementation of the Virtual Execution System
(VES), which is part of the ECMA standard. As processors change, you need only change the
way in which the executable code is generated from the processor-independent layer, and
you’ll still be able to run the old programs written for the earlier processor. Pure IL generated
by compilers targeting the CLR does not contain x86 instructions or any other object code that
is configured to run on a particular processor. Compilers output MSIL code that can run on the
virtual machine.

You’ll see in Chapter 3 that there are several compilation modes available, ranging from
native code to pure MSIL that is still machine-dependent, to verifiably safe code that is truly
machine independent. Each of these modes has advantages and disadvantages. Later you’ll
learn in more detail when to use each option. For now, remember that there are many degrees
of managed code. It is often assumed that once you transition to the CLR, all the problems (and
freedoms) of the native code world are left behind. That is not true—you can run almost all
classic C++ source code on the virtual machine just by recompiling it with the /clr option. The
only difference is that your code is compiled to IL instead of assembler in between. Ultimately,
it all boils down to machine code being executed by the processor.

The real benefits of the managed world come not with recompiling your existing classic
C++ code, but by using the C++/CLI constructs that constitute a system of object types uniquely
suited to do well in the managed world.

The CLR type system is mirrored in C++/CLI, so it’s important to understand how it works.

The Common Type System
The CLR has a unified type system called the common type system (CTS). A unified type system
has at its root a single type, often called Object, from which all types are derived. This is very
different from the C++ type system, sometimes called a forest, in which there may arbitrarily be
many independent type hierarchies.

Hogenson_705-2C01.fm Page 3 Friday, October 13, 2006 2:11 PM

4 C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I

The CTS represents a set of type relationships that many C++ programmers will find
unfamiliar. There is no multiple inheritance, and only reference classes can be allocated on the
managed heap and support inheritance and virtual functions. Chapter 2 will explain these
differences. I’ll use the term managed type to mean any type that is part of the CLR’s type
system. The C++/CLI type system for managed types is designed to allow the use of managed
types in C++/CLI programs. Because all managed types must inherit (directly or indirectly)
from the root type, Object, even the primitive types used in managed code (the managed
versions of int, double, etc.) have a place in this type system, in the form of objects that wrap or
“box” each primitive data type. The base class library defines a namespace called System, which
contains fundamental types and other commonly used constructs. In fact, the CTS defines
most primitive types in the System namespace with their own names, such as System::Int32.
These names are common to all languages using the CLR. The primitive C++/CLI types such as
int are synonyms for those types (e.g., int is synonymous with Int32), so that you have the
convenience of referring to the type using the same name you’d use in C++. You can use two
ways to refer to most primitive types. In Chapter 2, you’ll learn how the primitive types in C++
map onto the CLI common type system.

Reference Types and Value Types
Every managed type falls into one of two categories: reference types or value types. The differ-
ence between value types and reference types is that value types have value semantics while
reference types have reference semantics. Value semantics means that when an object is assigned
(or passed as a parameter), it is copied byte for byte. Reference semantics means that when an
object is assigned (or passed as a parameter), the object is not copied; instead, another refer-
ence to that same object is created.

Value types are used for objects that represent a value, like a primitive type or a simple
aggregate (e.g., a small structure), especially one that is to be used in mathematical computa-
tions. Computations with value types are more efficient than with reference types because
reference types incur an extra level of indirection; reference types exist on the heap and can
only be accessed through the handle, while the value type holds its value directly. Value types
actually live in a limited scope, either as an automatic variable at function scope or in the scope
of another object as a field. They also do not have the overhead of an object header, as refer-
ence types do. However, value types are limited in many ways. Value types are often copied—
for example, when used as a method parameter, a copy is automatically created—so they are
not suitable for large objects; they also cannot be used in inheritance hierarchies, and they don’t
support more complex and powerful object operations such as copy constructors, nontrivial
default constructors, assignment operators, and so on. Value types are useful for simple aggre-
gates that are frequently passed around or used in computations, such as a complex number,
a point, or a simple buffer.

Reference types are used wherever reference semantics are required and when modeling
more complex objects for which the limitations of value types are too restrictive. They may
inherit from another class and may in turn be inherited from. Thus they may be used to model
complex objects. They are not copied byte for byte (for example, when passed as an argument
to a function), rather, they are passed as references, so they may be large and not suffer a penalty
from excessive copying. They can have special member functions such as default constructors,
destructors, copy constructors, and the copy assignment operator (although neither type can
have overloaded operators new and delete). The actual objects live on the managed heap. The

Hogenson_705-2C01.fm Page 4 Friday, October 13, 2006 2:11 PM

C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I 5

handle itself is just an address that refers to the object’s header (which is 8 bytes in size for the
32-bit CLR) on the heap.

Figure 1-1 shows the memory layout of a typical value type and a reference type.

Figure 1-1. Storage characteristics of reference types and value types. Value types are shown here
on the stack (although they could also be a part of an object on the managed heap). Reference
types involve a handle plus an object on the managed heap.

The CLI and the .NET Framework
The CLI includes the VES and a standardized set of class libraries, often called the base class
library (BCL), that provides support for fundamental programming. The .NET Framework is a
large class library released by Microsoft that implements the base class library as well as addi-
tional functionality that isn’t part of the ECMA standard. If you are using Visual Studio and
targeting the CLR, you have access to the .NET Framework class libraries within your C++/CLI
code. If you are using a different implementation of C++/CLI than Microsoft’s, you still have
the base class library. This book will not attempt to cover all that the .NET Framework, or even
the base class library, allows you to do; however, it will cover basic input and output, the collec-
tion classes (Chapter 11), some of the exceptions, some of the metadata that can be applied to
types, and ways of getting information on types at runtime (reflection), all in Chapter 10, as
well as other useful aspects of the Framework as necessary.

The full .NET Framework contains support for database access, XML, web services, web
pages, Windows application development, and so on.

“Hello, World”
Now let’s look at our first program (Listing 1-1) and see how the language looks in actual code.

Hogenson_705-2C01.fm Page 5 Friday, October 13, 2006 2:11 PM

6 C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I

Listing 1-1. “Hello, World” in Classic C++

// hello_world1.cpp
int main()
{
 System::Console::WriteLine("Hello, World!");
}

The program in Listing 1-1 illustrates the classic “Hello, World” application. It shows several
features from classic C++—a method call with a string argument, the qualification of a method
name by the class and the namespace to which it belongs (with the usual double-colon scope
operator), and the main method. It shows a few features new to the .NET Framework, such as
the System namespace, the Console class, and the Console class’s WriteLine method. You’ll
notice that there is no #include directive. Instead, managed type libraries in C++/CLI are refer-
enced from their compiled form with #using.

You could also write this program as shown in Listing 1-2.

Listing 1-2. “Hello, World” in C++/CLI

// hello_world2.cpp
#using "mscorlib.dll"
using namespace System;

int main()
{
 Console::WriteLine("Hello World!");
}

The #using directive references the DLL file mscorlib.dll. The program also employs the
using declaration in the classic C++ sense, which as you know is simply used to avoid having to
use fully qualified names for program elements in the System namespace. The #using directive
is a new C++/CLI concept used to reference the types contained in a DLL. This is very different
from #include, which references types declared before compilation. The first example you saw
works because the compiler automatically inserts #using "mscorlib.dll". This is convenient
since nearly all CLI programs require the types that it defines. The DLL is a CLI assembly, which
contains not just executable code but also metadata that exposes information about the types
and program elements in the assembly. No header file is needed.

Listing 1-3 illustrates a few more features of the language.

Listing 1-3. More C++/CLI Features

// hello_world3.cpp

using namespace System;

ref class Hello
{
 String^ greeting;

Hogenson_705-2C01.fm Page 6 Friday, October 13, 2006 2:11 PM

C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I 7

 public:
 void Greet()
 {
 Console::WriteLine(greeting + "!");
 }

 void SetGreeting(String^ newGreeting)
 {
 greeting = newGreeting;
 }
};

int main()
{
 Hello^ hello = gcnew Hello();
 hello->SetGreeting("Hello World");
 hello->Greet();
 hello->SetGreeting("Howdy");
 hello->Greet();
}

This code creates a reference class, as indicated by the ref keyword. It’s called Hello, with
a method called Greet and another method called SetGreeting. The SetGreeting method takes
a System::String parameter. The caret indicates that the parameter type is “handle to String.”
The String class is the CLI version of a (Unicode) character string. Unlike a native string, the
String object is invariant, which means it cannot be changed without creating a brand new
string. In Chapter 5, you’ll see how to create a string that can be manipulated and changed.

■Note Actually, ref is not a keyword in exactly the same sense as a C++ keyword. For one thing, it is
sensitive to the context in which it is used. Unlike keywords, context-sensitive keywords introduced in C++/CLI can
be used as variable names without causing program errors. Also, keywords like ref class are considered
whitespaced keywords, which obey certain special rules. See the appendix for information about context-
sensitive keywords and whitespaced keywords.

Notice that the member variable greeting is initialized right at its point of declaration,
which wouldn’t be allowed for a nonconstant member in classic C++, but is conveniently
allowed in C++/CLI. Also notice the Greet method uses a new C++/CLI method of concate-
nating strings using the + operator. Also, the SetGreeting method takes a String, but the code
passes a string literal. The compiler creates a String object from the string literal passed in.
You’ll learn the details of how this works in Chapter 5, but for now just notice that you can use
string literals in a natural way with the String type, without concerning yourself with the subtleties
of whether it’s a narrow or wide character string literal.

Hogenson_705-2C01.fm Page 7 Friday, October 13, 2006 2:11 PM

8 C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I

Just as in classic C++, the main method does not need to explicitly return a value, even
though its return value is properly int, not void. This is because the compiler inserts return 0;
automatically.

In the main method in Listing 1-3, you saw a very important pattern that is used throughout all
C++/CLI code. The Hello class is a reference type, lives on the managed heap, is created with
gcnew instead of new, and referred to using a handle, a named object that refers to the unnamed
object on the managed heap. The indirection operator is used, just as if the handle were a
pointer to the object.

I’ve demonstrated a simple reference type, but you may be wondering whether the Hello
class could also be a value type. Indeed, it can be, because it has no explicit inheritance relationship
with any other class (although, because it is a managed type, it implicitly inherits from Object);
it has no special initialization that would require you to define a special default constructor;
it has no other special member functions, and it contains no data. Listing 1-4 shows how the
code would look with Hello as a value type.

Listing 1-4. Using a Value Type

// hello_world4.cpp
using namespace System;

value class Hello
{
 // This code is unchanged.
};

int main()
{
 Hello hello;
 hello.Greet("Hello World");
}

In the second version, hello is created as a local stack variable in the main function, rather
than on the managed heap, which might result in some performance gain, although with only
one object, this hardly matters. Also, a real value type would probably have member variables,
perhaps as in Listing 1-5.

Listing 1-5. A Value Type with Members

value struct Greeting
{
 String^ greeting;
 Char punctuator;

 void PrintGreeting(String^ name)
 {
 Console::WriteLine(greeting + name + punctuator);
 }
};

Hogenson_705-2C01.fm Page 8 Friday, October 13, 2006 2:11 PM

C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I 9

As you can see, the code uses value struct in place of value class. Throughout this text,
whenever I use the term class, I mean “class or structure.” As in classic C++, the difference
between a structure and a class is that structure members are public by default, and class
members are private by default.

As you know, the main function, also known as the entry point, may take additional arguments
that are passed in by the operating system: the number of arguments (traditionally called argc)
and an array of the arguments as character arrays (traditionally called argv). This information
is also available to C++/CLI programmers, but instead of using the traditional arguments, you
use a managed array type. In this case, the array parameter is an array of handles to String,
each string representing one of the supplied arguments. The managed array type is one of the
many fundamental types defined by the CLR that has special language support in C++/CLI.
These CLR analogs of C++ types provide bounds checking, but also are objects in and of them-
selves, and so provide features called properties (discussed in the next chapter), such as the
Length property used in Listing 1-6, and useful methods. The old int parameter of classic C++’s
main function, argc, isn’t necessary since the Length property can be used to get the count of
command-line arguments.

With this array of arguments, you can supply a person’s name on the command line and
print a greeting customized to that person, as demonstrated in Listing 1-6.

Listing 1-6. Using Command-Line Arguments

// greeting.cpp
using namespace System;

value struct Greeting
{
 String^ greeting;
 Char punctuator;

 void PrintGreeting(String^ name)
 {
 Console::WriteLine(greeting + name + punctuator);
 }
};

int main(array<String^>^ args)
{
 Greeting greet;
 greet.greeting = "Hi ";
 greet.punctuator = '!';

 if (args->Length < 1)
 {
 Console::WriteLine("Enter names on the command line, like this:"
 " greeting <name1> <name2> ...");
 Console::WriteLine("Use quotes around names with spaces.");
 return 1;
 }

Hogenson_705-2C01.fm Page 9 Friday, October 13, 2006 2:11 PM

10 C H A P T E R 1 ■ I N T R O D U C I N G C + + / C L I

 for (int i = 0; i < args->Length; i++)
 {
 greet.PrintGreeting(args[i]);
 }

 greet.greeting = "Hello, ";
 greet.punctuator = '.';

 for each (String^ s in args)
 {
 greet.PrintGreeting(s);
 }
}

As you can see, the type of the array elements is enclosed in angle brackets, and in this case
it’s a handle to String. Why a handle? Because String is a reference type. OK, but why are there
two handle symbols? The array type is also a reference type, so the outer caret symbol indicates
that the argument is a handle to an array.

Listing 1-6 also uses the for each statement. The for each statement is the semantic
equivalent of the for loop above it. By eliminating the code for counting, bounds checking, and
incrementing, the for each statement simplifies performing iteration of an array or other
enumerable data structure. In Chapter 9, you’ll see how to create data structures that allow the
use of for each.

Also, notice that the program name is not part of the array, as it is in classic C++. The program
name is consumed by the CLR, so it is not available to programs through the args array.

Summary
This chapter touched upon the basics of garbage collection and handles. You were introduced
to a few terms, learned about the common type system, and saw a simple first program in C++/CLI.
You looked closely at the new main function, with a brief preview of the managed array and the
for each statement.

In the next chapter, you’ll explore many more C++/CLI language features in a broad overview.

Hogenson_705-2C01.fm Page 10 Friday, October 13, 2006 2:11 PM

11

■ ■ ■

C H A P T E R 2

A Quick Tour of the C++/CLI
Language Features

The aim of this chapter is to give you a general idea of what C++/CLI is all about by providing
a brief look at most of the new language features in the context of an extended example, saving
the details for later chapters. By the end of this chapter, you’ll have a good idea of the scope of
the most important changes and will be able to start writing some code.

Primitive Types
The CLI contains a definition of a new type system called the common type system (CTS). It is
the task of a .NET language to map its own type system to the CTS. Table 2-1 shows the
mapping for C++/CLI.

Table 2-1. Primitive Types and the Common Type System

CLI Type C++/CLI Keyword Declaration Description

Boolean bool bool isValid = true; true or false

Byte unsigned char unsigned char c = 'a'; 8-bit unsigned integer

Char wchar_t wchar_t wc = 'a' or L'a'; Unicode character

Double double double d = 1.0E-13; 8-byte double-precision
floating-point number

Int16 short short s = 123; 16-bit signed integer

Int32 long, int int i = -1000000; 32-bit signed integer

Int64 __int64, long long __int64 i64 = 2000; 64-bit signed integer

SByte char char c = 'a'; Signed 8-bit integer

Single float float f = 1.04f; 4-byte single-precision
floating-point number

Hogenson_705-2C02.fm Page 11 Friday, October 13, 2006 2:14 PM

12 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

In this book, the term managed type refers to any of the CLI types mentioned in Table 2-1,
or any of the aggregate types (ref class, value class, etc.) mentioned in the next section.

Aggregate Types
Aggregate types in C++ include structures, unions, classes, and so on. C++/CLI provides managed
aggregate types. The CTS supports several kinds of aggregate types:

• ref class and ref struct, a reference type representing an object

• value class and value struct, usually a small object representing a value

• enum class

• interface class, an interface only, with no implementation, inherited by classes and
other interfaces

• Managed arrays

• Parameterized types, which are types that contain at least one unspecified type that may
be substituted by a real type when the parameterized type is used

Let’s explore these concepts together by developing some code to make a simple model of
atoms and radioactive decay. First, consider an atom. To start, we’ll want to model its position
and what type of atom it is. In this initial model, we’re going to consider atoms to be like the
billiard balls they were once thought to be, before the quantum revolution changed all that. So
we will for the moment consider that an atom has a definite position in three-dimensional
space. In classic C++, we might create a class like the one in the upcoming listing, choosing to
reflect the atomic number—the number of protons, which determines what type of element it
is; and the isotope number—the number of protons plus the number of neutrons, which deter-
mines which isotope of the element it is. The isotope number can make a very innocuous or a
very explosive difference in practical terms (and in geopolitical terms). For example, you may
have heard of carbon dating, in which the amount of radioactive carbon-14 is measured to
determine the age of wood or other organic materials. Carbon can have an isotope number
of 12, 13, or 14. The most common isotope of carbon is carbon-12, whereas carbon-14 is a
radioactive isotope. You may also have heard a lot of controversy about isotopes of uranium.

UInt16 unsigned short unsigned short s = 15; Unsigned 16-bit
signed integer

UInt32 unsigned long,
unsigned int

unsigned int i = 500000; Unsigned 32-bit
signed integer

UInt64 unsigned __int64,
unsigned long long

unsigned __int64 i64 = 400; Unsigned 64-bit integer

Void void n/a Untyped data or no data

Table 2-1. Primitive Types and the Common Type System (Continued)

CLI Type C++/CLI Keyword Declaration Description

Hogenson_705-2C02.fm Page 12 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 13

There’s a huge geopolitical difference between uranium-238, which is merely mildly radioactive,
and uranium-235, which is the principal ingredient of a nuclear bomb.

In this chapter, together we’ll create a program that simulates radioactive decay, with
specific reference to carbon-14 decay used in carbon dating. We’ll start with a fairly crude
example, but by the end of the chapter, we’ll make it better using C++/CLI constructs. Radio-
active decay is the process by which an atom changes into another type of atom by some kind
of alteration in the nucleus. These alterations result in changes that transform the atom into a
different element. Carbon-14, for example, undergoes radioactive decay by emitting an electron
and changing into nitrogen-14. This type of radioactive decay is referred to as β- (beta minus or
simply beta) decay, and always results in a neutron turning into a proton in the nucleus, thus
increasing the atomic number by 1. Other forms of decay include β+ (beta plus or positron)
decay, in which a positron is emitted, or alpha decay, in which an alpha particle (two protons
and two neutrons) is ejected from the nucleus. Figure 2-1 illustrates beta decay for carbon-14.

Figure 2-1. Beta decay. Carbon-14 decays into nitrogen-14 by emitting an electron. Neutrons are
shown in black; protons in gray.

Listing 2-1 shows our native C++ class modeling the atom.

Listing 2-1. Modeling an Atom in Native C++

// atom.cpp
class Atom
{
 private:
 double pos[3];
 unsigned int atomicNumber;
 unsigned int isotopeNumber;

 public:
 Atom() : atomicNumber(1), isotopeNumber(1)
 {
 // Let's say we most often use hydrogen atoms,
 // so there is a default constructor that assumes you are
 // creating a hydrogen atom.
 pos[0] = 0; pos[1] = 0; pos[2] = 0;
 }

Hogenson_705-2C02.fm Page 13 Friday, October 13, 2006 2:14 PM

14 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

 Atom(double x, double y, double z, unsigned int a, unsigned int n)
 : atomicNumber(a), isotopeNumber(n)
 {
 pos[0] = x; pos[1] = y; pos[2] = z;
 }
 unsigned int GetAtomicNumber() { return atomicNumber; }
 void SetAtomicNumber(unsigned int a) { atomicNumber = a; }
 unsigned int GetIsotopeNumber() { return isotopeNumber; }
 void SetIsotopeNumber(unsigned int n) { isotopeNumber = n; }
 double GetPosition(int index) { return pos[index]; }
 void SetPosition(int index, double value) { pos[index] = value; }
};

You could compile the class unchanged in C++/CLI with the following command line:

cl /clr atom.cpp

and it would be a valid C++/CLI program. That’s because C++/CLI is a superset of C++, so any
C++ class or program is a C++/CLI class or program. In C++/CLI, the type in Listing 2-1 (or any
type that could have been written in classic C++) is a native type.

Reference Classes
Recall that the managed types use ref class (or value class, etc.), whereas the native classes
just use class in the declaration. Reference classes are often informally referred to as ref classes
or ref types. What happens if we just change class Atom to ref class Atom to see whether that
makes it a valid reference type? (The /LD option tells the linker to generate a DLL instead of an
executable.)

C:\ >cl /clr /LD atom1.cpp
atom1.cpp(4) : error C4368: cannot define 'pos' as a member of managed 'Atom':
mixed types are not supported

Well, it doesn’t work. Looks like there are some things that we cannot use in a managed
type. The compiler is telling us that we’re trying to use a native type in a reference type, which
is not allowed. (In Chapter 12, you’ll see how to use interoperability features to allow some
mixing.)

I mentioned that there is something called a managed array. Using that instead of the
native array should fix the problem, as in Listing 2-2.

Listing 2-2. Using a Managed Array

// atom_managed.cpp
ref class Atom
{
 private:
 array<double>^ pos; // Declare the managed array.
 unsigned int atomicNumber;
 unsigned int isotopeNumber;

Hogenson_705-2C02.fm Page 14 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 15

 public:
 Atom()
 {
 // We'll need to allocate space for the position values.
 pos = gcnew array<double>(3);
 pos[0] = 0; pos[1] = 0; pos[2] = 0;
 atomicNumber = 1;
 isotopeNumber = 1;
 }
 Atom(double x, double y, double z, unsigned int atNo, unsigned int n)
 : atomicNumber(atNo), isotopeNumber(n)
 {
 // Create the managed array.
 pos = gcnew array<double>(3);
 pos[0] = x; pos[1] = y; pos[2] = z;
 }
 // The rest of the class declaration is unchanged.
};

So we have a ref class Atom with a managed array, and the rest of the code still works. In
the managed type system, the array type is a type inheriting from Object, like all types in the
CTS. Note the syntax used to declare the array. We use the angle brackets suggestive of a template
argument to specify the type of the array. Don’t be deceived—it is not a real template type.
Notice that we also use the handle symbol, indicating that pos is a handle to a type. Also, we use
gcnew to create the array, specifying the type and the number of elements in the constructor
argument instead of using square brackets in the declaration. The managed array is a reference
type, so the array and its values are allocated on the managed heap.

So what exactly can you embed as fields in a managed type? You can embed the types
in the CTS, including primitive types, since they all have counterparts in the CLI: double is
System::Double, and so on. You cannot use a native array or native subobject. However, there
is a way to reference a native class in a managed class, as you’ll see in Chapter 12.

Value Classes
You may be wondering if, like the Hello type in the previous chapter, you could also have
created Atom as a value type. If you only change ref to value and recompile, you get an error
message that states “value types cannot define special member functions”—this is because of
the definition of the default constructor, which counts as a special member function. Thanks
to the compiler, value types always act as if they have a built-in default constructor that initializes
the data members to their default values (e.g., zero, false, etc.). In reality, there is no constructor
emitted, but the fields are initialized to their default values by the CLR. This enables arrays of
value types to be created very efficiently, but of course limits their usefulness to situations
where a zero value is meaningful.

Let’s say you try to satisfy the compiler and remove the default constructor. Now, you’ve
created a problem. If you create an atom using the built-in default constructor, you’ll have
atoms with atomic number zero, which wouldn’t be an atom at all. Arrays of value types don’t
call the constructor; instead, they make use of the runtime’s initialization of the value type

Hogenson_705-2C02.fm Page 15 Friday, October 13, 2006 2:14 PM

16 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

fields to zero, so if you wanted to create arrays of atoms, you would have to initialize them after
constructing them. You could certainly add an Initialize function to the class to do that, but
if some other programmer comes along later and tries to use the atoms before they’re initial-
ized, that programmer will get nonsense (see Listing 2-3).

Listing 2-3. C++/CLI’s Version of Heisenberg Uncertainty

void atoms()
{
 int n_atoms = 50;
 array<Atom>^ atoms = gcnew array<Atom>(n_atoms);

 // Between the array creation and initialization,
 // the atoms are in an invalid state.
 // Don't call GetAtomicNumber here!

 for (int i = 0; i < n_atoms; i++)
 {
 atoms[i].Initialize(/* ... */);
 }
}

Depending on how important this particular drawback is to you, you might decide that a
value type just won’t work. You have to look at the problem and determine whether the features
available in a value type are sufficient to model the problem effectively. Listing 2-4 provides an
example where a value type definitely makes sense: a Point class.

Listing 2-4. Defining a Value Type for Points in 3D Space

// value_struct.cpp
value struct Point3D
{
 double x;
 double y;
 double z;

};

Using this structure instead of the array makes the Atom class look like Listing 2-5.

Listing 2-5. Using a Value Type Instead of an Array

ref class Atom
{
 private:
 Point3D position;
 unsigned int atomicNumber;
 unsigned int isotopeNumber;

Hogenson_705-2C02.fm Page 16 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 17

 public:
 Atom(Point3D pos, unsigned int a, unsigned int n)
 : position(pos), atomicNumber(a), isotopeNumber(n)
 { }

 Point3D GetPosition()
 {
 return position;
 }
 void SetPosition(Point3D new_position)
 {
 position = new_position;
 }

 // The rest of the code is unchanged.

};

The value type Point3D is used as a member, return value, and parameter type. In all cases
you use it without the handle. You’ll see later that you can have a handle to a value type, but as
this code is written, the value type is copied when it is used as a parameter, and when it is returned.
Also, when used as a member for the position field, it takes up space in the memory layout of
the containing Atom class, rather than existing in an independent location. This is different
from the managed array implementation, in which the elements in the pos array were in a
separate heap location. Intensive computations with this class using the value struct should be
faster than the array implementation. This is the sweet spot for value types—they are very effi-
cient for small objects.

Enumeration Classes
So, you’ve seen all the managed aggregate types except interface classes and enumeration
classes. The enumeration class (or enum class for short) is pretty straightforward. It looks a lot
like a classic C++ enum, and like the C++ enum, it defines a series of named values. It’s actually
a value type. Listing 2-6 is an example of an enum class.

Listing 2-6. Declaring an Enum Class

// elements_enum.cpp

enum class Element
{
 Hydrogen = 1, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen,
 Fluorine, Neon
 // ... 100 or so other elements omitted for brevity
};

Hogenson_705-2C02.fm Page 17 Friday, October 13, 2006 2:14 PM

18 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

While we could have listed these in the order they appear in the Tom Lehrer song “The
Elements” (a classic sung to the tune of “Major-General’s Song”), we’ll list them in order of
increasing atomic number, so we can convert between element type and atomic number easily.

The methods on the enum class type allow a bit of extra functionality that you wouldn’t get
with the old C++ enum. For example, you can call the ToString method on the enum and use
that to print the named value. This is possible because the enum class type, like all .NET types,
derives from Object, and Object has a ToString method. The .NET Framework Enum type over-
rides ToString, and that implementation returns the enum named value as a String. If you’ve
ever written a tedious switch statement in C or C++ to generate a string for the value of an enum,
you’ll appreciate this convenience. We could use this Element enum in our Atom class by adding
new method GetElementType to the Atom class, as shown in Listing 2-7.

Listing 2-7. Using Enums in the Atom Class

ref class Atom
{
 // ...

 Element GetElementType()
 {
 return safe_cast<Element>(atomicNumber);
 }
 void SetElementType(Element element)
 {
 atomicNumber = safe_cast<unsigned int>(element);
 }
 String^ GetElementString()
 {
 return GetElementType().ToString();
 }
};

Notice a few things about this code. Instead of the classic C++ static_cast (or dynamic_cast),
we use a casting construct that is introduced in C++/CLI, safe_cast. A safe cast is a cast in
which there is, if needed, a runtime check for validity. Actually, there is no check to see whether
the value fits within the range of defined values for that enum, so in fact this is equivalent to
static_cast.

Because safe_cast is safer for more complicated conversions, it is recommended for general
use in code targeting the CLR. However, there may be a performance loss if a type check must
be performed at runtime. The compiler will determine whether a type check is actually neces-
sary, so if it’s not, the code is just as efficient as with another form of cast. If the type check fails,
safe_cast throws an exception. Using dynamic_cast would also result in a runtime type check,
the only difference being that dynamic_cast will never throw an exception. In this particular
case (Listing 2-7), the compiler knows that the enum value will never fail to be converted to an
unsigned integer.

Hogenson_705-2C02.fm Page 18 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 19

Interface Classes
Interfaces are not something that is available in classic C++, although something like an inter-
face could be created by using an abstract base class in which all the methods are pure virtual
(declared with = 0), which would mean that they had no implementation. Even so, such a class
is not quite the same as an interface. An interface class has no fields and no method implemen-
tations; an abstract base class may have these. Also, multiple interface classes may be inherited
by a class, whereas only one noninterface class may be inherited by a managed type.

We want to model radioactive decay. Since most atoms are not radioactive, we don’t want
to add radioactivity methods to our Atom class, but we do want another class, maybe
RadioactiveAtom, which we’ll use for the radioactivity modeling. We’ll have it inherit from Atom
and add the extra functionality for radioactive decay. It might be useful to have all the radioac-
tivity methods defined together so we can use them in another class. Who knows, maybe we’ll
eventually want to have a version of an Ion class that also implements the radioactivity
methods so we can have radioactive atoms with charge, or something. In classic C++, we might
be tempted to use multiple inheritance. We could create a RadioactiveIon class that inherits
from both Ion and RadioactiveAtom. But we can’t do that in C++/CLI (at least not in a managed
type) because in C++/CLI managed types are limited to only one direct base class. However,
a class may implement as many interface classes as are needed, so that is a good solution. An
interface defines a set of related methods; implementing an interface indicates that the type
supports the functionality defined by that interface. Many interfaces in the .NET Framework
have names that end in “able,” for example, IComparable, IEnumerable, ISerializable, and so
on, suggesting that interfaces deal with “abilities” of objects to behave in a certain way. Inher-
iting from the IComparable interface indicates that objects of your type support comparison
functionality; inheriting from IEnumerable indicates that your type supports iteration via .NET
Framework enumerators; and so on.

If you’re used to multiple inheritance, you may like it or you may not. I thought it was a
cool thing at first, until I tried to write up a complicated type system using multiple inheritance
and virtual base classes, and found that as the hierarchy got more complicated, it became diffi-
cult to tell which virtual method would be called. I became convinced that the compiler was
calling the wrong method, and filed a bug report including a distilled version of my rat’s nest
inheritance hierarchy. I was less excited about multiple inheritance after that. Whatever your
feelings about multiple inheritance in C++, the inheritance rules for C++/CLI types are a bit
easier to work with.

Using interfaces, the code in Listing 2-8 shows an implementation of RadioactiveAtom that
implements the IRadioactive interface.

Note the absence of the public keyword in the base class and interface list. Inheritance is
always public in C++/CLI, so there is no need for the public keyword.

Listing 2-8. Defining and Implementing an Interface

// atom_interfaces.cpp

interface class IRadioactive
{
 void AlphaDecay();
 void BetaDecay();

Hogenson_705-2C02.fm Page 19 Friday, October 13, 2006 2:14 PM

20 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

 double GetHalfLife();
};

ref class RadioactiveAtom : Atom, IRadioactive
{
 double half_life;

 void UpdateHalfLife()
 {
 // ...
 }

 public:
 // The atom releases an alpha particle
 // so it loses two protons and two neutrons.
 virtual void AlphaDecay()
 {
 SetAtomicNumber(GetAtomicNumber() - 2);
 SetIsotopeNumber(GetIsotopeNumber() - 4);
 UpdateHalfLife();
 }

 // The atom releases an electron.
 // A neutron changes into a proton.
 virtual void BetaDecay()
 {
 SetAtomicNumber(GetAtomicNumber() + 1);
 UpdateHalfLife();
 }

 virtual double GetHalfLife()
 {
 return half_life;
 }
};

The plan is to eventually set up a loop representing increasing time, and “roll the dice” at
each step to see whether each atom decays. If it does, we want to call the appropriate decay
method, either beta decay or alpha decay. These decay methods of the RadioactiveAtom class
will update the atomic number and isotope number of the atom according to the new isotope
that the atom decayed to. At this point, in reality, the atom could still be radioactive, and would
then possibly decay further. We would have to update the half-life at this point. In the next
sections, we will continue to develop this example.

The previous sections demonstrated the declaration and use of managed aggregate types,
including ref classes, value classes, managed arrays, enum classes, and interface classes. In the
next section, you’ll learn about features that model the “has-a” relationship for an object:
properties, delegates, and events.

Hogenson_705-2C02.fm Page 20 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 21

Elements Modeling the “has-a” Relationship
One thing you’ve probably noticed by now in our Atom class is there are a lot of methods that
begin with Get and Set to capture the “has-a” relationship between an object and the proper-
ties of the object. Some of the C++/CLI features were added simply to capture such commonly
used patterns in the language. Doing this helps standardize common coding practices, which
can help in making code more readable. Language features in C++/CLI supporting the “has-a”
relationship include properties and events.

Properties
C++/CLI provides language support for properties. Properties are elements of a class that are
represented by a value (or set of indexed values for indexed properties). Many objects have
properties, and making this a first-class language construct, even if at first they might seem a
trivial addition, does make life easier. Let’s change all the Get and Set methods and use prop-
erties instead. For simplicity we’ll return to the example without the interfaces (see Listing 2-9).

Listing 2-9. Using Properties

ref class Atom
{
 private:
 array<double>^ pos;

 public:

 Atom(double x, double y, double z, unsigned int a, unsigned int n)
 {
 pos = gcnew array<double>(3);
 pos[0] = x; pos[1] = y; pos[2] = z;

 AtomicNumber = a;
 IsotopeNumber = n;
 }

 property unsigned int AtomicNumber;
 property unsigned int IsotopeNumber;

 property Element ElementType
 {
 Element get()
 {
 return safe_cast<Element>(AtomicNumber);
 }

Hogenson_705-2C02.fm Page 21 Friday, October 13, 2006 2:14 PM

22 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

 void set(Element element)
 {
 AtomicNumber = safe_cast<int>(element);
 }
 }

 property double Position[int]
 {
 // If index is out of range, the array access will
 // throw an IndexOutOfRange exception.
 double get(int index) {
 return pos[index];
 }
 void set(int index, double value)
 {
 pos[index] = value;
 }
 }
};

We create four properties: AtomicNumber, IsotopeNumber, ElementType, and Position. We
deliberately use three different ways of defining these properties to illustrate the range of what
you can do with properties. The ElementType property is the standard, commonly used form.
The property is named, followed by a block containing the get and set methods, fully prototyped
and implemented. The names of the accessors must be get and set, although you don’t have to
implement both. If you implement only one of them, the property becomes read-only or write-
only. The AtomicNumber and IsotopeNumber properties are what’s known as trivial properties.
Trivial properties have getter and setter methods created automatically for them: also notice
that we remove the atomicNumber and isotopeNumber fields. They are no longer needed since
private fields are created automatically for trivial properties. The third type of property is
known as an indexed property or a vector property. Nonindexed properties are known as scalar
properties. The indexed property Position is implemented with what looks like array indexing
syntax. Vector properties take a value in square brackets and use that value as an index to
determine what value is returned.

Also notice that we use the property names just like fields in the rest of the body of the class.
This is what makes properties so convenient. In assignment expressions, property get and set
methods are called implicitly as appropriate when a property is accessed or is assigned to.

AtomicNumber = safe_cast<int>(element); // set called implicitly

You can also use the compound assignment operator (+=, -=, etc.) and the postfix or prefix
operators with properties to simplify the syntax in some cases. For example, consider the
AlphaDecay method in the RadioactiveAtom class. It could be written as shown in Listing 2-10.

Hogenson_705-2C02.fm Page 22 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 23

Listing 2-10. Using Compound Assignment Operators with Properties

 virtual void AlphaDecay()
 {
 AtomicNumber -= 2;
 IsotopeNumber -= 4;
 UpdateHalfLife();
 }

Delegates and Events
Managed types may have additional constructs for events. Events are based on delegates, managed
types that are like souped-up function pointers. Delegates are actually more than just a func-
tion pointer, because they may refer to a whole set of methods, rather than just one. Also, when
referencing a nonstatic method, they reference both the object and the method to call on that
object. As you’ll see, the syntax, both for declaring a delegate and invoking one, is simpler than
the corresponding syntax for using a function pointer or pointer to member. Continuing with
the radioactivity problem, we’ll now use delegates to implement radioactive decay. Atoms
have a certain probability for decay. The probability for decaying during a specific interval of
time can be determined from the half-life using the formula

probability of decay = ln 2 / halflife * timestep

The constant λ, known as the decay constant, is used to represent ln 2 / halflife, so this
could also be just

probability of decay = λ* timestep

Listing 2-11 demonstrates creating a delegate type, in this case DecayProcessFunc. The
RadioactiveAtoms class has a property named DecayProcess, which is of that delegate type. This
property can be set to the beta decay function (here beta minus decay), the alpha decay func-
tion, or perhaps some other rare type of radioactive decay.

The delegate indicates both the object and the method. This is the main difference between
a delegate and a pointer to member function in classic C++. Listing 2-11 provides the full code,
with the delegate code highlighted. I’ve removed the interface that was used in Listing 2-8, as it
is not central to the discussion now.

Listing 2-11. Using a Delegate

// radioactive_decay.cpp
using namespace System;

// This declares a delegate type that takes no parameters.
delegate void DecayProcessFunc();

enum class Element; // same as before
ref class Atom; // same as before, but without the position data

Hogenson_705-2C02.fm Page 23 Friday, October 13, 2006 2:14 PM

24 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

ref class RadioactiveAtom : Atom
{

 public:
 RadioactiveAtom(int a, int n, bool is_stable, double half_life)
 : Atom(a, n)
 {
 IsStable = is_stable;
 HalfLife = half_life;
 Lambda = Math::Log(2) / half_life;
 }

 // The atom releases an alpha particle
 // so it loses two protons and two neutrons.
 virtual void AlphaDecay()
 {
 AtomicNumber -= 2;
 IsotopeNumber -= 4;
 Update();
 }

 // The atom releases an electron.
 void BetaDecay()
 {
 AtomicNumber++;
 Update();
 }

 property bool IsStable;
 property double HalfLife;
 property double Lambda;
 void Update()
 {
 // In this case we assume it decays to a stable nucleus.
 // nullptr is the C++/CLI way to refer to an unassigned handle.
 DecayProcess = nullptr;
 IsStable = true;
 }

 // Declare the delegate property. We'll call this when
 // an atom decays.
 property DecayProcessFunc^ DecayProcess;

}; // ref class RadioactiveAtom

Hogenson_705-2C02.fm Page 24 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 25

void SimulateDecay(int a, int n, double halflife, int step,
 int max_time, int num_atoms, int seed)
{
 array<RadioactiveAtom^>^ atoms = gcnew array<RadioactiveAtom^>(num_atoms);

 // Initialize the array.
 // We cannot use a for each statement here because the for each
 // statement is not allowed to modify the atoms array.
 for (int i = 0; i < num_atoms; i++)
 {
 atoms[i] = gcnew RadioactiveAtom(a, n, false, halflife);
 // Create the delegate.
 atoms[i]->DecayProcess =
 gcnew DecayProcessFunc(atoms[i], &RadioactiveAtom::BetaDecay);
 }

 Random^ rand = gcnew Random(seed);
 for (int t = 0; t < max_time; t++)
 {
 for each (RadioactiveAtom^ atom in atoms)
 {
 if ((!atom->IsStable) && atom->Lambda * step > rand->NextDouble())
 {
 // Invoke the delegate.
 atom->DecayProcess->Invoke();
 }
 }
 }
}

int main()
{
 // Carbon-14. Atomic Number: 6 Isotope Number 14
 // Half-Life 5730 years
 // Number of atoms 10000
 // Maximum time 10000
 // Random number seed 7757
 SimulateDecay(6, 14, 5730, 1, 10000, 10000, 7757);
}

The delegate code consists of a delegate declaration, indicating what arguments and
return types the delegated functions may have. Then, there is the point at which the delegate is
created. A delegate is a reference type, so you refer to it using a handle, and you use gcnew to
create the delegate. If the delegate is going to reference a nonstatic member function, call the
delegate constructor that takes both an object pointer and the method to be called, using the
address-of operator (&) and the qualified method name. If you’re assigning the delegate to a
static method, omit the object and just pass the second parameter, indicating the method,
like this:

Hogenson_705-2C02.fm Page 25 Friday, October 13, 2006 2:14 PM

26 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

atoms[i]->DecayProcess =
 gcnew DecayProcessFunc(&RadioactiveAtom::SomeStaticMethod);

So far we’ve used delegates but not events. An event is an abstraction representing some-
thing happening. Methods called event handlers may be hooked up to events to respond in
some way to the event. Events are of type delegate, but as you’ve seen, delegates themselves
may be used independently of events. The delegate forms a link between the source of the
event (possibly a user action, or some action initiated by other code) and the object and function
that responds in some way to the action. In this case, the RadioactiveAtom class will have a
Decay event, declared as in Listing 2-12.

Listing 2-12. Declaring an Event

ref class RadioactiveAtom
{
 // other code...

 // the event declaration
 event DecayProcessFunc^ Decay;

};

Instead of invoking the delegate directly, we call the event in the client code using function-
call syntax. The code that hooks up the event looks the same as with the delegate property (see
Listing 2-13).

Listing 2-13. Hooking Up and Firing an Event

// Hook up the event.
atoms[i]->Decay +=
 gcnew DecayProcessFunc(atoms[i], &RadioactiveAtom::BetaDecay);

// ...

// Fire the event.
a->Decay();

It is possible for an event to trigger multiple actions. You’ll learn about such possibilities in
Chapter 7.

You could certainly refine the design further. Perhaps you are bothered by the fact that
every instance of RadioactiveAtom contains its own halflife and lambda properties. You might
instead create a static data structure to store the half-life information for every type of isotope.
What would this structure look like? It would require two indices to look up: both the atomic
number and the isotope. However, a two-dimensional array would be a huge waste of space,
since most of the cells would never be used. You might try implementing an isotope table as a
sparse array—a data structure that can be used like an array but is a hashtable underneath so
as to avoid storing space for unused elements. The implementation of such a collection type
would probably be a template in classic C++. In C++/CLI, it could be a template or it could be
another type of parameterized type, a generic type, which the next section describes.

Hogenson_705-2C02.fm Page 26 Friday, October 13, 2006 2:14 PM

C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C + + / C L I L A N G U A G E F E A T U R E S 27

Generics
While templates are supported in C++/CLI for both native and managed types, another kind of
parameterized type has been defined in C++/CLI: generics. Generics fulfill a different purpose,
providing runtime parameterization of types, whereas templates provide compile-time
parameterization of types. You’ll explore the implications of this difference in Chapter 11. The
.NET Framework 2.0 supports generics and provides generic collection classes. One such class
is the generic List, which is a dynamic array class that automatically expands to accommodate
larger numbers of elements. The List class definition would look something like the code in
Listing 2-14.

Listing 2-14. Defining a Generic List Class

generic <typename T>
ref class List
{
 public:
 T Add(T t) { /* ... */ }
 void Remove(T t) { /* ... */ }
 // other methods
};

This declaration indicates that List is a generic type with one type parameter, T. Returning
to our example of treating isotopes of the chemical elements, the List class is a good choice to
represent the isotopes of an element, since each element has a different number of isotopes.
The generic List collection is exposed as a property in this class. When the List object is
declared, an actual type (a handle to Isotope) is used as the parameter. Handles, rather than
direct reference types, are allowed as type parameter substitutions. You can also use a value
type without a handle. Listing 2-15 shows an ElementType class with the Isotopes property,
which is a list of isotopes for a particular element.

Listing 2-15. A Reference Class That Uses the Generic List As a Property

ref class Isotope; // implementation omitted for brevity

ref class ElementType
{

 // other properties specifying the element name, atomic number, etc.

 property List<Isotope^>^ Isotopes;
};

Using this generic type is as easy as using the managed array type. The code in Listing 2-16
uses a for each statement to iterate through the generic List collection to look up an isotope
by its number. Assume an Isotope class with an IsotopeNumber property.

Hogenson_705-2C02.fm Page 27 Friday, October 13, 2006 2:14 PM

28 C H A P T E R 2 ■ A Q U I C K T O U R O F T H E C+ + / C L I L A N G U A G E F E A T U R E S

Listing 2-16. Iterating Through a Generic Collection

ref class ElementType
{
 // omitting other members of the class

 // Find an isotope by number. If not found, return a
 // null handle (nullptr).
 Isotope^ FindIsotope(int isotope_number)
 {
 for each (Isotope^ isotope in Isotopes)
 {
 if (isotope->IsotopeNumber == isotope_number)
 return isotope;
 }
 return nullptr;
 }
};

A more complete discussion of generics and managed templates is the subject of Chapter 11.
In the meantime, we will use the generic List class in examples throughout this book. You’ll see
in Chapter 11 how to define generic classes and functions.

Summary
In this chapter, you learned some of the important language constructs of C++/CLI. Of course,
there are other significant features, and there is much more to say about each feature. You had
a quick look at primitive types, various aggregate types, managed arrays, properties, delegates,
events, and parameterized types. Later chapters will return to each of these aspects of the
language in more detail.

Before doing that, though, let’s look at compiling and building C++/CLI programs.

Hogenson_705-2C02.fm Page 28 Friday, October 13, 2006 2:14 PM

29

■ ■ ■

C H A P T E R 3

Building C++/CLI Programs for
the .NET Developer Platform
with Visual C++

This chapter is a necessary distraction from your main purpose, which is to learn about the
C++/CLI language. In this chapter, you’ll find some important information that is not specifi-
cally related to the language syntax, but to the platform, compiler, and development tools.
There’s a great deal to the .NET Developer Platform (NDP); entire books have been written on
the subject. This chapter can’t begin to cover everything in detail, so it’ll just touch upon some
of the key concepts and give a few examples that will get you started.

While most of what this book covers will pertain to any implementation of the CLI, in this
chapter I assume you are using Visual C++, the Microsoft implementation of the CLI, and your
programs will run on the .NET Developer Platform. This chapter covers what you’ll need to
know about the NDP if you’re using Visual C++. If you are already familiar with targeting the
NDP in another language, such as C#, you’ll find much of this chapter a review, except for the
discussion of the C++/CLI #using statement and the discussion of the CLR compilation modes
available in C++.

Also, this chapter discusses compilation modes available in Visual C++. The compilation
modes produce different types of libraries and executables that are suited to different runtime
environments, ranging from code that is compiled natively to the instruction set of the processor
as previous generations of C++ compilers have always done, to verifiably safe managed code
that can run in some of the most restrictive environments such as inside an Internet browser
or inside a database engine such as Microsoft SQL Server 2005, where being certain that a
program will not crash and corrupt the server’s memory is crucial.

Targeting the .NET Developer Platform
with Visual C++ 2005
If you are using Visual C++ 2005, you may use the compiler directly from the command line,
perhaps using makefiles or a tool that ships with Visual Studio called MSBuild to build your
applications. Or, you may prefer to use the Visual Studio IDE. Among many C++ programmers,
the command line is still king. The examples in this book will all run from the command line.

Hogenson_705-2C03.fm Page 29 Friday, October 13, 2006 2:18 PM

30 C H A P T E R 3 ■ B U I LD I N G C + + / C L I P R O G R A M S

It’s sometimes better to learn how to use the compiler from the command line and then
transfer that knowledge to the IDE.

Visual C++ 2005 Compilation Modes
Compilation modes produce code suited for different situations. The CLR compilation mode
may be set in the IDE with the Common Language Runtime support property in the General
tab of the Project Properties dialog.

Unless specifically noted, the examples in this book will compile with the /clr:pure and
/clr:safe options.

Safe Mode (/clr:safe Compiler Option)
Code that is compiled with the /clr:safe compiler option is said to be verifiable, indicating
that it can be proven that the code is maximally type safe, which in turn helps verify that it
doesn’t write into memory that it doesn’t own, and so will not generate access violations, buffer
overruns, and the like. Safe code is required when your assembly needs to run in a very restric-
tive environment. Most of the examples in this book will compile in safe mode, except for the
code in Chapter 12, which deals specifically with unverifiable code, and code that uses specific
constructs such as unsafe uses of static_cast. If you’re familiar with C#, safe code is like C#
code that doesn’t have any unsafe blocks. In Visual Basic, it’s not possible to use unsafe constructs,
so Visual Basic code is the equivalent of the C++/CLI safe mode.

Safe code is also processor independent, which is useful if you need the same program
code to run on both 32- and 64-bit implementations of the CLR.

Pure Mode (/clr:pure Compiler Option)
Pure mode produces code that uses IL instructions only, not machine instructions, but is not
verifiably safe. It may use pointers or other features that result in code that could produce
buffer overruns, access violations, and other memory corruption. If you’re familiar with C#,
pure code is like a C# program compiled with the /unsafe option. There is no equivalent in
Visual Basic.

If you try to compile a native C++ application with /clr:pure, it will work only if the code
being compiled has no constructs that generate machine-specific code. You can, however, link
with native libraries. The linker will add the necessary hookups to call into native libraries in
/clr:pure mode. For example, the program

// message_box.cpp
#include <windows.h>

int main()
{
 ::MessageBox(0,"message","caption",MB_OK);
}

Hogenson_705-2C03.fm Page 30 Friday, October 13, 2006 2:18 PM

C H A P T E R 3 ■ B U I L D I N G C + + / C L I P R O G R A M S 31

compiled with

cl /clr:pure message_box.cpp user32.lib

will produce an executable that runs as expected.
Prepackaged libraries may or may not support the pure option. For example, as of Visual

C++ 2005, ATL and MFC don’t support /clr:pure. It depends on whether or not they were
compiled with the /clr:pure option. You may recompile your own native libraries as pure
code, provided they meet certain restrictions, such as not using

• Inline assembly.

• __declspec(align).

• Any construct that brings in native code.

• Code that generates native exports (i.e., not using __dllexport to expose functions
compiled in a pure assembly to native callers). This is because the calling convention
used in pure assemblies (__clrcall) is incompatible with native code.

• #import to use a COM library.

• Intrinsics, unless the intrinsics have an MSIL implementation, such as certain C runtime
or CRT functions.

Refer to the appendix for a table of what’s available in which compilation mode.
If you’re a library vendor, you might decide to ship a native and a pure version of the same

library. This is what Microsoft does for the CRT and Standard C++ Libraries. Recent updates to
the C Runtime Library and the Standard C++ Library allow programs to use the pure version of
these libraries. If you compile with /clr or /clr:pure, the appropriate pure version of these
standard libraries will be linked in. Using a separate pure version of a library can be advanta-
geous if there are frequent calls to a library, since it’s better if program execution remains
mainly in either managed code or native code, rather than switching frequently between the two.

Mixed Mode (/clr Compiler Option)
In mixed mode, in addition to having the managed types and the .NET Framework available,
you as a programmer in the C++ language with the C++/CLI extensions may use classic C++
code and libraries if needed. In fact, you can compile nearly all classic C++ code with the /clr
option. The C++ language as extended by the C++/CLI language extensions is (for all practical
purposes) a superset of the classic C++, so any C++ application is automatically a C++/CLI
application—provided that you compile with the /clr option. Mixed mode lets you decide how
much you want to transition your existing code to make use of the managed world. Your existing
code will work in the managed world, and you are free to use managed constructs as needed
and enjoy the benefits. Your mixed-mode assemblies are still capable of exporting native func-
tions, importing COM libraries, using inline assembly, compiler intrinsics, and so on, which
are not available in pure or safe mode.

Mixed-mode assemblies cannot be used with reflection (discussed in Chapter 10), because
the reflection mechanism doesn’t understand native types and functions. Pure mode does
support reflection.

Hogenson_705-2C03.fm Page 31 Friday, October 13, 2006 2:18 PM

32 C H A P T E R 3 ■ B U I LD I N G C + + / C L I P R O G R A M S

Managed Extensions Syntax (/clr:oldSyntax Compiler Option)
If you have code that was written with the managed extensions syntax, you can still compile it
by using the /clr:oldSyntax option. You can link object files generated with this option with
C++/CLI code or native code. You should avoid using the old syntax too heavily, though, since
it is deprecated in the Visual C++ 2005 release.

None of the Above
Without /clr at all, of course, you are compiling native C++ in the classic way. If you try to use
any of the C++/CLI language features, you will get compiler errors.

Caveats When Upgrading Code to
Visual C++ 2005
Although we’ve said that preexisting code should compile in mixed mode just by turning on
the /clr option, there are many changes to the standard libraries in Visual C++ 2005 that will
cause compilation errors and warnings. For example, the C Runtime Library was updated to
support more secure versions of many functions; by default, the unsafe versions of these functions
will generate compiler warnings. Also, numerous changes were made to better conform with
the C++ and C standards. Refer to the “What’s New” section in the Visual C++ documentation
for details on these changes and how to disable the warnings, if necessary.

Library changes aside, most code written for native C++, for example with Visual C++ 6.0,
will work when compiled with the /clr option in Visual C++ 2005.

Architecture Dependence and 64-bit
Programming
The CLR implements a layer that abstracts the processor architecture. The IL itself contained
in managed assemblies is independent of any specific processor architecture. However, as
you’ve seen, code compiled with /clr rather than /clr:pure or /clr:safe may contain plat-
form-specific code. Also, even in pure mode, you can invoke platform-specific functions. If you
want to produce an application that is capable of running on any implementation of the CLI,
you should use the /clr:safe option. If you know you’ll be using the Microsoft Windows plat-
form, but want the output code to be neutral with respect to CPU architecture, then you can
use /clr:safe. There are x64 and Itanium versions of the CLR, and these versions of the CLR
will run the same platform-neutral assemblies compiled with /clr:safe, natively on the x64
architecture. If the x64 CLR is not available (for example if the 64-bit computer has only a 32-bit
operating system installed), the code can be executed by the 32-bit CLR.

If you want to produce an application specific to a particular architecture that still runs
under the CLR, use the /clr option but use the particular compiler (or cross-compiler) for that
architecture. Visual C++ 2005 ships cross-compilers for x64 and Intel Itanium architectures, so
you can generate code on an x86 computer that will execute natively on a 64-bit computer.

Hogenson_705-2C03.fm Page 32 Friday, October 13, 2006 2:18 PM

C H A P T E R 3 ■ B U I L D I N G C + + / C L I P R O G R A M S 33

When compiling for 64-bit, there are some potential incompatibilities, since the size of a
pointer is different, and so on. You can compile with the /Wp64 option to get warnings for many
potential incompatibilities. Refer to the Visual C++ 2005 documentation for details.

Assemblies and Modules
The fundamental unit or packaging of code compiled for the CLI is the assembly. An assembly
could be an executable (EXE), a dynamically linked library (DLL), or possibly a collection of
files. The only difference between the two (other than the file name) is that an executable has
an entry point (i.e., a main method). The similarity in file extension to native DLLs and EXEs
hides the significant differences in the files themselves. Both assemblies and old-style DLLs
and executables contain executable code, although assemblies contain IL code intended to be
executed by the CLR.

The picture is a bit more complicated than just that assemblies contain IL code and native
DLLs and executables contain native code. Assemblies can actually contain a mixture of native
object code and IL. This feature is key for C++ programmers moving existing code to the managed
environment, since code that compiles in classic C++ may actually be brought into the CLR
fairly easily by recompiling your existing C++ in mixed mode to make an assembly. The actual
file will be quite different.

Assemblies contain additional information called metadata that a traditional executable
or DLL does not contain. The metadata is stored in assemblies along with the generated code.
You can view the metadata using a tool called ILDasm.exe that ships with the .NET Framework,
as explained in the upcoming section “Viewing Metadata with ILDasm.exe.”

By default, Visual Studio Project packages all the source files in a project into a single
assembly when the project is built. Similarly, the default behavior of a command-line compila-
tion is to produce a single assembly. However, it is possible to change compiler options or
project settings to omit the manifest required in an assembly. If you specify the /LN compiler
option and the /NOASSEMBLY linker option, the resulting output is referred to as a module or
netmodule. A .NET module has the extension .netmodule to distinguish it from an assembly.
Where modules are useful is when you are planning to combine many modules from different
compilations into a single assembly. You could compile the modules separately, and then link
them all together with the linker (link.exe) or with something called the assembly linker (al.exe)
to produce your final assembly. The common language runtime won’t load modules that
haven’t been linked into an assembly since they don’t have a manifest. The CLR makes use of
the metadata in the manifest and cannot load code in a naked module without the metadata
from its parent assembly.

The Assembly Manifest
The term manifest comes from the Latin manifestus, which means “blatant, obvious.” It was
later used in the shipping industry to mean the list of cargo and passengers on a ship or train.
To find a particular passenger or to discover what cargo is contained on a train, you would
consult the manifest. The assembly manifest serves the same purpose for an assembly. The
runtime uses the manifest to find information about what types are in an assembly, and where
to find those types in the assembly. Because of the information in the manifest, the assembly is
said to be self-describing. This presents a significant advance from unmanaged executables

Hogenson_705-2C03.fm Page 33 Friday, October 13, 2006 2:18 PM

34 C H A P T E R 3 ■ B U I LD I N G C + + / C L I P R O G R A M S

and DLLs, which do not have such rich data describing themselves. This rich metadata makes
it easier to dynamically load assemblies and start executing the code in them.

Viewing Metadata with ILDasm.exe
You can familiarize yourself with the basics of assemblies and metadata by compiling a simple
C++/CLI program and looking at the resulting output using a tool called ILDasm.exe. ILDasm
means Intermediate Language Disassembler. Consider the simple C++ program in Listing 3-1.

Listing 3-1. A Simple C++/CLI Program

// reftype.cpp
using namespace System;

ref class RefType
{
 String^ classname;

 public:

 RefType()
 {
 classname = gcnew String("RefType");
 }

 String^ GetMessage()
 {
 return String::Format("I am a " + classname);
 }

};

int main()
{
 RefType^ r = gcnew RefType();
 Console::WriteLine(r->GetMessage());
}

You must compile it (in Visual C++) with the /clr option, like this:

cl.exe /clr:safe reftype.cpp

This produces the executable reftype.exe. As in classic C++, you also have the option of
producing an object file first, and then later linking to produce an executable. None of these
basics have changed. In fact, the file name doesn’t look any different. What has changed is that
the resulting executable is an assembly with managed code, not a native executable. When it is
executed, it will actually fire up the CLR and run in a managed context.

Hogenson_705-2C03.fm Page 34 Friday, October 13, 2006 2:18 PM

C H A P T E R 3 ■ B U I L D I N G C + + / C L I P R O G R A M S 35

You can view the metadata for reftype.exe by running ILDasm.exe. You can find ILDasm.exe in
your .NET Framework SDK Bin directory. You may want to add this directory to the PATH envi-
ronment variable so you always have access to ILDasm, since it is so useful. For example, it
might be C:\Program Files\Microsoft Visual Studio 8\SDK\2.0\Bin. Use the /text option if
you just want text output to the console, instead of a GUI. Here’s the output of the command
line Ildasm.exe reftype.exe /text:

// Microsoft (R) .NET Framework IL Disassembler. Version 2.0.50727.42
// Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v2.0.50727
.assembly extern mscorlib
{
 .publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
 .hash = (8B 15 F4 76 87 23 8A E0 94 A8 8B 19 BF 0F 87 C9 // ...v.#..........

 F0 97 3C C3) // ..<.
 .ver 2:0:0:0
}
.assembly reftype
{
 .hash algorithm 0x00008004
 .ver 0:0:0:0
}
.module reftype.exe
// MVID: {8C21FB19-23D0-45E2-87BD-20EC172CF3CA}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000001 // ILONLY
// Image base: 0x02EC0000

// ================== GLOBAL METHODS =========================

.method assembly static int32 main() cil managed
{
 .entrypoint
 // Code size 19 (0x13)
 .maxstack 1
 .locals init (class RefType V_0)
 IL_0000: newobj instance void RefType::.ctor()
 IL_0005: stloc.0

Hogenson_705-2C03.fm Page 35 Friday, October 13, 2006 2:18 PM

36 C H A P T E R 3 ■ B U I LD I N G C + + / C L I P R O G R A M S

 IL_0006: ldloc.0
 IL_0007: call instance string RefType::GetMessage()
 IL_000c: call void [mscorlib]System.Console::WriteLine(string)
 IL_0011: ldc.i4.0
 IL_0012: ret
} // end of global method main

// ===

// =============== CLASS MEMBERS DECLARATION ===================

.class private auto ansi beforefieldinit RefType
 extends [mscorlib]System.Object
{
 .field private string classname
 .method public hidebysig specialname rtspecialname
 instance void .ctor() cil managed
 {
 // Code size 18 (0x12)
 .maxstack 2
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: ldarg.0
 IL_0007: ldstr "MyRefType"
 IL_000c: stfld string RefType::classname
 IL_0011: ret
 } // end of method RefType::.ctor

 .method public hidebysig instance string
 GetMessage() cil managed
 {
 // Code size 32 (0x20)
 .maxstack 2
 .locals init (string V_0,
 object[] V_1)
 IL_0000: ldc.i4.0
 IL_0001: newarr [mscorlib]System.Object
 IL_0006: stloc.1
 IL_0007: ldstr "I am a {0}"
 IL_000c: ldarg.0
 IL_000d: ldfld string RefType::classname
 IL_0012: call string [mscorlib]System.String::Concat(string,
 string)
 IL_0017: ldloc.1
 IL_0018: call string [mscorlib]System.String::Format(string,

Hogenson_705-2C03.fm Page 36 Friday, October 13, 2006 2:18 PM

C H A P T E R 3 ■ B U I L D I N G C + + / C L I P R O G R A M S 37

 object[])
 IL_001d: stloc.0
 IL_001e: ldloc.0
 IL_001f: ret
 } // end of method RefType::GetMessage

} // end of class RefType

// ===

// *********** DISASSEMBLY COMPLETE ***********************

You can see the generated Intermediate Language code for your RefType class and
GetMessage method, the main method, and some metadata. You might want to read and under-
stand this Intermediate Language. Even if you don’t, you’ll want to be able to use ILDasm.exe to
view the classes and symbols defined in a particular assembly, and to examine the information
in the manifest. You might try the same thing except instead of specifying /clr:pure, use just
/clr. You’ll notice a whole lot of other types and variables in addition to what was there before.
This is the C runtime initialization plumbing. Because the CRT is not available in safe mode,
you don’t get that when you compile with /clr:safe.

Certain core classes of the .NET Framework are included in the assembly mscorlib.dll.
There is not a direct correlation between namespaces and assemblies or DLL names. This can
be confusing until you get used to it, since it’s easy to forget. It’s possible for members of a
particular namespace to be distributed across many assemblies (DLLs).

The #using Directive
Like the classic C++ #include directive, the #using directive is used in a source code file to refer
to an assembly (usually a DLL) that defines programming elements that you want to use in
your program. The act of putting a #using directive for a particular assembly in your code is
called referencing the assembly. Once an assembly is referenced in this way, you’ll be able to use any
publicly exposed classes, interfaces, and other program elements defined in that assembly.

The types in mscorlib.dll are referenced by default, so there is no need for the #using
directive to reference anything in this assembly. If there’s a question as to whether a particular
type is in mscorlib.dll, use ILDasm.exe on mscorlib.dll (you can find mscorlib.dll in the
.NET Framework installation folder).

In mixed code, ways of accessing native libraries remain the same. If COM libraries are
used, use the #import directive as you would normally. Header files are not used for referencing
managed types outside of the assembly where they live, but the #include directive is still used
to reference headers written in classic C++ and for intra-assembly code (for example, in a
Visual Studio project).

Types, assembly-level global functions, and other symbols are defined in assemblies and
may or may not be accessible outside that assembly, depending on accessibility modifiers
declared on the symbol. Accessibility modifiers are slightly different in C++/CLI, as you’ll see in
Chapter 6. For now just know that you can use public or private on types and assembly-global

Hogenson_705-2C03.fm Page 37 Friday, October 13, 2006 2:18 PM

38 C H A P T E R 3 ■ B U I LD I N G C + + / C L I P R O G R A M S

functions to control whether the program element is accessible to other assemblies or internal
to the assembly.

Listing 3-2 shows a typical use of the #using directive. The Windows Forms APIs are not in
the mscorlib.dll assembly, so they must be referenced via the #using directive. The #using
directive should not be confused with the using statement. The using namespace statement
following this directive is optional, and merely allows us to avoid typing the fully qualified
name System::Windows::Forms::MessageBox.

Listing 3-2. Using the #using Directive

// using_directive.cpp
#using "System.Windows.Forms.dll"

using namespace System::Windows::Forms;

int main()
{
 MessageBox::Show("Hello World!");
}

There are times when you may want to omit the using namespace statements, and simply
use the fully qualified name. You will introduce ambiguities if you use two or more namespaces
that define the same identifiers. To disambiguate these, you need to fully qualify the names
using the scope operator (::), as in Listing 3-3.

Listing 3-3. Using the Scope Operator

// using_directive2.cpp
#using "System.Windows.Forms.dll"

int main()
{
 System::Windows::Forms::MessageBox::Show("Hello World!");
}

The rule is the same as in classic C++, but I mention it here to emphasize the #using direc-
tive is distinct from the using namespace directive, and you may often use both.

If you are used to .NET programming in C# or Visual Basic .NET, you are used to providing
references on the compile command line or in the Visual Studio project system. If you are using
C++, you don’t need to reference the assembly on the command line if you reference the assembly
via the #using directive. However, you can use the /FU (Force Using) compiler option to refer-
ence assemblies via the command line without a #using directive in the code.

cl.exe mycode.cpp /FUmylibrary.dll

You can also set the /FU compiler option in the Visual C++ development environment. The
name of the property is Force #using in the Advanced section of the C/C++ property pages.

Hogenson_705-2C03.fm Page 38 Friday, October 13, 2006 2:18 PM

C H A P T E R 3 ■ B U I L D I N G C + + / C L I P R O G R A M S 39

Referencing Assemblies and Access Control
You will want to separate your code into different dynamically linked libraries. Let’s look at
how to use types from one assembly in another in the simplest possible example.

Compile the code in Listing 3-4 using the /LD option to generate a DLL. This DLL is a CLR
assembly just as was the executable created in a previous section.

Listing 3-4. A Trivial Public Class

// file1.cpp

public ref class R
{
};

As mentioned, we must add the keyword public at the class level to make this type visible
in another assembly (see Listing 3-5).

Listing 3-5. Using Our Trivial Class from Another Assembly

// file2.cpp
#using "file1.dll"

// We'll define a function, so we can see it in the metadata later.
void F()
{
 R r;
}

int main()
{}

Without the keyword public, the type R will not be visible to the code in file2.cpp. Compile
file2.cpp with the usual options for managed code (just /clr or /clr:pure will do) to generate
an executable assembly file2.exe.

Friend Assemblies
It’s possible to set up a special relationship between assemblies that is rather like the friend
class in classic C++. Such assemblies are called friend assemblies. To reference a friend assembly,
use the as_friend modifier in the #using directive.

#using "myfriend.dll" as_friend

The assembly that’s referenced needs to have an assembly attribute. You’ll read about
attributes in detail in Chapter 10, but for now you can just add the following line anywhere in
the assembly source code (let’s say this is in the source code for myfriend.dll). Typically, this
would go in the AssemblyInfo.cpp file in a Visual Studio project:

Hogenson_705-2C03.fm Page 39 Friday, October 13, 2006 2:18 PM

40 C H A P T E R 3 ■ B U I LD I N G C + + / C L I P R O G R A M S

[assembly:InternalsVisibleTo("friend_assembly_filename")];

This line means that an assembly called friend_assembly_filename.dll or
friend_assembly_filename.exe is allowed to use the as_friend modifier when referencing
myfriend.dll.

When an assembly has the special friend relationship, all types at global scope, and any
global functions, are accessible to the friend assembly.

Assembly Attributes
The InternalsVisibleTo attribute is an example of an assembly attribute. As you saw in Chapter 2,
attributes in general specify metadata that can be applied to program elements. If the word
assembly is specified in square brackets, the attribute applies to the entire assembly. Most of
the metadata in the manifest can be set via assembly attributes.

The Linker and the Assembly Linker
Both the assembly linker and the traditional linker are important tools that do different things.
They are both called by the Visual C++ project system, and both can be used from the command
line or in build scripts. You should refer to the product documentation for full information on
these tools, but I will describe briefly what role these tools play so you will know when you need
them. If you just use Visual Studio and let these be called for you, you’ll see them referenced in
the build output. When debugging build problems or configuring a new build, it’s necessary to
know the distinct roles that they have.

The linker, link.exe, is still a very useful tool in CLR programming. The linker normally
runs automatically when you compile, whether you are compiling for native or CLR code. You
can run it explicitly if you need to. The linker will create native DLLs and executables if given
native object files. It will create managed assemblies if given managed object files as input. If
given both managed and native input, it produces a mixed-mode assembly that links together
both the managed and native object code. Linker command-line options provide additional
control. For example, suppose you are linking object files with different compilation modes,
where some were compiled in pure mode, and some in safe mode. By default, the output will
be considered to be the lowest level of verifiability, in this case pure instead of safe. You can
also control the linker to reduce the level of verifiability if that’s what you need. Refer to the
Visual C++ documentation for details if you require such behavior.

The assembly linker, or al.exe, is a tool used to create assemblies from .NET modules. In
other words, it adds assembly manifests to module files. The assembly linker can be run at the
command line; it will take any modules specified on the command line and create an assembly
that links together these modules. You can also use the assembly linker to specify assembly-
level metadata in the assembly’s manifest, such as the version of the assembly, your company
name, description, and so on. Most of these can also be set via assembly attributes; if there is a
conflict, the values set by al.exe override those in source.

Hogenson_705-2C03.fm Page 40 Friday, October 13, 2006 2:18 PM

C H A P T E R 3 ■ B U I L D I N G C + + / C L I P R O G R A M S 41

Resources and Assemblies
The term resources, as in classic Visual C++ applications, refers to constant data such as strings,
images, audio data, and the like. The .NET Framework provides extensive support for managing
resources. If your code requires resources, you can use the linker to embed those resources
into the output assembly using the /ASSEMBLYRESOURCE command-line option. You can access
both Windows resources, for example an .RC file, and managed resources in .resources files.
The assembly linker allows you to add managed resources to assemblies, but not operating
system resources. Refer to product documentation for details on how to create these files and
access these resources from code.

Signed Assemblies
The linker and assembly linker also provide support for applying security features to an
assembly. The process is referred to as signing an assembly. Signing assemblies is covered in
detail in Expert Visual C++/CLI by Marcus Heege (Apress, forthcoming).

Multifile Assemblies
Assemblies can also consist of more than one file. The manifest for an assembly may actually
be a separate file. The manifest actually contains information that specifies all the files that
make up an assembly. Since this is an introductory text, it won’t cover how to create and work
with multifile assemblies.

Summary
In this chapter, we’ve looked at the difference between programming in classic C++ vs. managed
code. We looked at Microsoft’s Visual C++ 2005 and in particular the compilation modes avail-
able with Visual C++ 2005, including /clr:pure, /clr:safe, /clr:oldSyntax, /clr, and none of
the above. We briefly discussed how to target 64-bit architectures with Visual C++ 2005. You
also learned what an assembly is, looked at how to build one, examined what’s in an assembly,
saw how to reference other assemblies in a C++/CLI program, including how to control access
to types in other assemblies, and briefly looked at the difference between the linker and the
assembly linker. You also briefly saw some of what else there is to know about working with
assemblies. There is much more that can be learned about assemblies in the CLR, but you now
have enough for the purposes of working through the rest of this book.

In the next chapter, you’ll learn about objects and their semantics.

Hogenson_705-2C03.fm Page 41 Friday, October 13, 2006 2:18 PM

Hogenson_705-2C03.fm Page 42 Friday, October 13, 2006 2:18 PM

43

■ ■ ■

C H A P T E R 4

Object Semantics in C++/CLI

This chapter gets back into the language itself and covers how objects behave in C++/CLI.
You’ll learn a bit more about value types and reference types, including some of the implica-
tions of having a unified type system. You’ll also see how to work with objects on the managed
heap as though they were automatic variables, complete with the assurance that they will be
cleaned up when they go out of scope. You’ll look at tracking references and object derefer-
encing and copying. You’ll also explore the various methods of passing parameters in C++/CLI
and look at how to use C++/CLI types as return values.

Object Semantics for Reference Types
Variables of reference types, whether declared as a handle or not, are not the objects them-
selves; they are only references that may point to an actual object or may be unassigned. When
a handle is first declared, it need not be assigned a value immediately. If not assigned, it is
assigned the “value” nullptr, which is essentially an equivalent way of saying NULL or 0 in
classic C++. Because handles can be null, functions that take reference types as parameters
must always check to see whether the handle is null before using the object. Any attempt to
access the nonexistent object will result in a NullReferenceException being thrown.

References can be assigned using the assignment operator (=), so more than one handle
may be created to the same object. Unlike value types, the assignment operator does not copy
the object; only the handle (internally a heap address) is copied. Over the lifetime of an object, the
number of handles to it may become quite large. The number of handles increases whenever
an assignment occurs and decreases as reference variables go out of scope or are redirected to
other objects. There is nothing special about the original handle that created the object—it
could go out of scope, but as long as there is at least one handle to an object, it is still considered
a live object. There may come a time, finally, when the object has no remaining handles. At that
point, it is an orphaned object. It still exists, but there’s no way it can be accessed again in the
program. The garbage collector is designed to eventually free up the memory for that object.
The garbage collector runs on a separate background thread and has its own algorithm for
determining when an object will be cleaned up. There is no way to be sure of when the object
will be cleaned up relative to the execution of your program. If you need to explicitly control
object cleanup, there is a way, which Chapter 6 will explain.

Hogenson_705-2C04.fm Page 43 Friday, October 13, 2006 2:22 PM

44 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

Object Semantics for Value Types
Value types are rather like primitive types in many ways. When assigned to another variable,
the full object is copied byte for byte. For this reason, it is not a good idea to use a value type
for a large object or a resource. Value types generally represent a small aggregate of data that
represents a quantity or a small amount of information. They are generally not to be used for
abstractions and generally provide few member functions. They also are not involved in inher-
itance hierarchies. I use the word “generally” because there are no hard-and-fast rules for when
to use value types and when to use reference types; there is certainly a gray area where either a
value type or a reference type will do well.

Value types can always be “boxed up” and used like a reference type, for example, if passed
to a function that takes a handle to an object (Object^) as a parameter, as described in the next
section. The term boxing refers to the fact that an object is created on the heap to contain the
value type instance.

Implications of the Unified Type System
As stated in Chapter 1, the managed type system is unified. Every managed type directly or
indirectly inherits explicitly or implicitly from a single type called Object. This includes all
reference types and the boxed form of all value types, and even the built-in primitive types,
considering the aliases for those types such as Int32, Char, Double, etc. In Chapter 2, you saw
how the array type is an object type, complete with properties, such as Length, and methods.
These methods are part of the System::Array class. In fact, there are also methods defined on
the Object class that every managed type has. Listing 4-1 is what the declaration of the Object
type would look like, showing the available public methods (there are some protected methods
as well, not shown here).

Listing 4-1. The Object Type

ref class Object
{
 public:
 virtual Type^ GetType();
 virtual String^ ToString();
 virtual bool Equals(Object^);
 static bool Equals(Object^, Object^);
 static bool ReferenceEquals(Object^);
 virtual int GetHashCode();

};

The unified type system enables us to create functions that can operate on objects of any
type, simply by taking a handle to Object as a parameter. The function can then figure out the
type of the object and do something appropriate for that object. Or, in the case of a collection
class, a single collection type with object handles as its elements could be used for objects of
any type, although you’ll see in Chapter 11 that a generic collection would be better. A very
simple example of a function that might be useful is one that displays the type of an object

Hogenson_705-2C04.fm Page 44 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 45

along with a string representation of the object. Something like the function in Listing 4-2
might serve as a useful debugging tool.

Listing 4-2. Displaying an Object As a String

// debug_print.cpp
using namespace System;

void DebugPrint(Object^ obj)
{
 // For debugging purposes, display the type of the object
 // and its string conversion.

 System::Type^ type = obj->GetType();
 Console::WriteLine("Type: {0} Value: {1}", type->ToString(),
 obj->ToString());

}

This function could be called with any managed type, but also any of the primitive types.
It may seem strange that you could call these methods on a primitive type, like int, so it is
worthwhile to delve into how this is possible.

Implicit Boxing and Unboxing
In classic C++, the primitive types don’t inherit from anything. They’re not classes, they’re just
types. They’re not objects and can’t be treated as such—for example, you can’t call methods on
them. And they certainly don’t have all the members of the base class Object. In the managed
world, the primitive types may be wrapped in an object when there is a need to represent them
as objects. This wrapping is referred to as boxing. Boxing is used whenever a value type (which
could be a primitive type) is converted into an object type, either by being cast to an object
handle, or by being passed to a function taking a handle to an Object as a parameter type, or by
being assigned to a variable of type “handle to Object.” When a variable of a type that does not
explicitly inherit from Object, such as an integer, is implicitly converted to an Object in any of
the preceding situations, an object is created on the fly for that variable. The operation is slower
than operations involving the naked value type, so it is good to know when it is taking place.
Because boxing takes place implicitly, it is possible to treat all primitive types, in fact all managed
types, as if they inherit from Object whenever the need arises. Consider the calls to DebugPrint
in Listing 4-3.

Listing 4-3. Boxing an Integer Type

 int i = 56;
 DebugPrint(i);

 String^ s = "Time flies like an arrow; fruit flies like a banana.";
 DebugPrint(s);

Hogenson_705-2C04.fm Page 45 Friday, October 13, 2006 2:22 PM

46 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

Unboxing occurs when an object type is cast back to a primitive type, as shown in
Listing 4-4.

Listing 4-4. Unboxing an Object to an Integer

// unboxing.cpp
using namespace System;

Object^ f(Object^ obj)
{
 Console::WriteLine("In f, with " + obj->ToString() + ".");
 return obj;
}

int main()
{
 int i = 1;
 int j = safe_cast<int>(f(i)); // Cast back to int to unbox the object.

}

The output of Listing 4-4 is as follows:

In f, with 1.

In Listing 4-4, the object returned is not needed after the integer is extracted from it. The
object may then be garbage collected, because all handles to it are gone. I view boxing as a
welcome convenience that allows all types to be treated in the same way; however, there is a
performance price to pay. For a function like DebugPrint, which has to deal with all kinds of
types, it makes a lot of sense to rely on boxing because it’s likely not a performance-critical
function. For performance-critical code, you would want to avoid unnecessary boxing and
unboxing since the creation of an object is unnecessary overhead.

Boxing takes place whenever a value type is converted to an object, not just in the context
of a function call. A cast to Object, for example, results in a boxing conversion.

int i = 5;
Object^ o = (Object^) i; // boxing conversion

Aside from conversions, even literal values can be treated as objects and methods called
on them. The following code results in a boxing conversion from int to Object:

Console::WriteLine((100).ToString());

To summarize, implicit boxing and unboxing of value types allows value types to be treated
just like reference types. You might wonder if there’s a way of treating a reference type like a
value type, at least in some respects. One aspect of value types that may be emulated by reference
types is their deterministic scoping. If they are members of a class, they are cleaned up and

Hogenson_705-2C04.fm Page 46 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 47

destroyed when the function scope ends. For various reasons that I will describe, you might
want your reference types to exhibit this behavior. In the next section you’ll see how this is done.

Stack vs. Heap Semantics
As you know, in a C++ program, variables may be declared on the stack or on the heap. Where
they live is integral to the lifecycle of these objects. You just saw how value types can be treated
as heap objects, and in fact are wrapped up in objects that are actually on the heap. This begs
the question of whether the opposite could be true. Could a reference type live on the stack?
Before we go too far, let’s work through an example that will help you understand why you
would need this behavior.

In the following example, we have a botany database. This is a large database of informa-
tion on plants. For plant lovers, such as myself, this database is an incredible treasure trove of
knowledge on the botany and cultivation requirements of thousands of trees, shrubs, vines,
fruits, vegetables, and flowers. It also happens to be a very heavily accessed database that’s
used by thousands of people, and there is a hard limit on the number of simultaneous connections
to that database. One of the key pieces of code that hits that database is in a class, CPlantData,
that serves up the information on plants. It’s our job to rewrite this class using C++/CLI as part
of the new managed access code to this database (see Listing 4-5). There is a static function
called PlantQuery that handles requests for data. As a native class, it creates a DBConnection
object on the stack, uses the connection to query the database, and then allows the destructor
to close the connection when the function exits.

Listing 4-5. Accessing the Botany Database

// PlantQuery.cpp

class Recordset;

class DBConnection
{
 public:
 DBConnection()
 {
 // Open the connection.
 // ...
 }
 void Query(char* search, Recordset** records)
 {
 // Query the database, generate recordset.
 // ...
 }
 ~DBConnection()
 {
 // Close the connection.
 // ...
 }
};

Hogenson_705-2C04.fm Page 47 Friday, October 13, 2006 2:22 PM

48 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

class PlantData
{
 public:
 static void PlantQuery(char* search, Recordset** records)
 {
 DBConnection connection;
 connection.Query(search, records);
 } // destructor for connection called
};

A bit of a philosophical perspective is in order here. The stack and the heap have a historical
origin in terms of how programming languages and memory models were implemented and
evolved. There are significant lifecycle differences between stack and heap objects. Stack objects
are short-lived and are freed up at the end of the block in which they are declared. They are
fundamentally local variables. Heap objects could live for a lot longer and are not tied to any
particular function scope. The design of C++/CLI is shaped by the idea that the notion of the
semantics of a stack variable or a heap variable can be separated from the actual implementa-
tion of a given variable as actual memory on the stack or heap. Another way of looking at it is
that because we have reference types that cannot live on the stack, we’d like a way to have our
cake and eat it, too. We’d like reference types with the semantics of stack variables. With this in
mind, consider the managed version of the preceding example.

If you went ahead and implemented the native classes DBConnection and PlantData as
managed types using a literal transliteration of the code, your code would look something like
Listing 4-6.

Listing 4-6. Accessing the Botany Database with Managed Classes

// ManagedPlantQuery.cpp
using namespace System;

ref class Recordset;

ref class DBConnection
{
 public:
 DBConnection()
 {
 // Open the connection.
 // ...
 }
 Recordset^ Query(String^ search)
 {
 // Query the database, generate recordset,
 // and return handle to recordset.
 // ...
 }

Hogenson_705-2C04.fm Page 48 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 49

 ~DBConnection()
 {
 // Close the connection.
 // ...
 }
};

ref class PlantData
{
 public:
 static Recordset^ PlantQuery(String^ search)
 {
 DBConnection^ connection = gcnew DBConnection();
 return connection->Query(search);
 }
};

If you were to use this code in production, you would run into a problem in that the large
botany database with the limited number of connections frequently runs out of available
connections, so people have trouble accessing the database. Depending on the database and
data access implementation, this could mean connections are refused, or a significant delay
enters the system as data access code is blocked awaiting a connection. And all this because the
destruction of managed objects happens not when the function exits, but only when the garbage
collector feels like cleaning them up. In fact, you will find that the destructor never gets called
at all in the preceding code even when the object is finally cleaned up. Instead, something
called the finalizer gets called by the garbage collector to take care of the cleanup, if one exists.
You’ll learn more about that in Chapter 6.

The ability to control when a variable goes out of scope and is destroyed is clearly necessary.
Objects that open database connections or block a communication channel such as a socket
should free up these resources as soon as they’re no longer needed. For native C++ program-
mers, the solution to this problem might be to create the variable on the stack and be assured
that its destructor, which frees up the resources, would be called at the end of the function.
What can be done in the managed environment, when reference types cannot be created on
the stack at all?

There are several ways of solving the problem. In the code for Listing 4-6, for example, we
could have inserted an explicit delete, as in Listing 4-7.

Listing 4-7. Using an Explicit Delete

static Recordset^ PlantQuery(String^ search)
 {
 DBConnection^ connection = gcnew DBConnection();
 Recordset^ records = connection->Query(search);
 delete connection;
 return records;
 }

Hogenson_705-2C04.fm Page 49 Friday, October 13, 2006 2:22 PM

50 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

This would work, but now we find ourselves having to remember to call delete. Another
possibility is to have DBConnection be a value type. Value types are created in a specific scope,
not on the heap, so that is a possible solution that would mean the object would be cleaned up
automatically when the enclosing scope (perhaps a stack frame or enclosing object) terminates.
However, value types cannot define their own constructors and destructors, so this won’t work
in this case and in fact is too limited to be a general solution. What we really would like is a way
to have a reference type with a deterministic lifetime.

If you’re a C# programmer, you’ll know that the way to provide a reference type with a
deterministic lifetime in that language is the using statement. The using statement in C#
involves the creation of a block and defines the scope of an object as local to the block. When
the block exits, a cleanup method gets called on the object that acts like a destructor and frees
any resources. This works fine, except that in order to be used in a using statement, objects
must implement an interface, IDisposable, and a method, Dispose, which performs the cleanup.
The Dispose method gets called when the block exits. The main drawback of the C# method is
that programmers forget to implement IDisposable, or do it incorrectly..

C++ programmers are already familiar with creating an object that gets destroyed at the
end of a function. So instead of requiring that you implement an interface and define a block
for everything that is to be destroyed, the C++/CLI language allows you to use reference types
with stack semantics. Using variables as if they were on the stack is so integral to C++ program-
ming methodology that C++/CLI was designed with the ability to create instances of managed
objects (on the heap) but treat them as if they were on the stack, complete with the destructor
being called at the end of the block.

In Listing 4-8, we are opening a connection to a database of botanical information on
various plants and creating the DBConnection class using stack semantics, even though it is a
reference type on the heap.

Listing 4-8. Treating an Object on the Heap Like One on the Stack

// ManagedPlantQuery2.cpp
using namespace System;

ref class Recordset;

ref class DBConnection
{
 public:
 DBConnection()
 {
 // Open the connection.
 // ...
 }
 Recordset^ Query(String^ search)
 {
 // Query the database, generate recordset,
 // and return pointer to recordset.
 // ...
 }

Hogenson_705-2C04.fm Page 50 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 51

 ~DBConnection()
 {
 // Close the connection.
 // ...
 }
};

ref class PlantData
{
 public:
 static Recordset^ PlantQuery(String^ search)
 {
 DBConnection connection;
 return connection.Query(search);
 }
};

If you use stack semantics, you are working with an object that is actually on the heap, but
the variable is not used as a handle type. What the compiler is doing here could be called sleight of
handle, if you’ll pardon the expression. The actual IL code emitted with stack semantics and
heap semantics doesn’t differ much—from the perspective of the runtime, you are manipu-
lating a reference to a heap object in both cases. What is different is the syntax you use and,
critically, the execution of the destructor at the end of the function. To sum up, the heap-
allocated object is immediately deleted at the end of the block, rather than lazily garbage
collected, and, as a consequence, the destructor is called immediately upon deletion.

Pitfalls of Delete and Stack Semantics
Stack semantics works for reference types, but not String or array types. Both of these are
built-in special types that are not designed to be used in this way. Consider Listing 4-9.

Listing 4-9. Misconstruing Stack Semantics

// string_array_stack_semantics.cpp

using namespace System;

int main()
{
 String s = "test"; // error
 array<int> a; // error
}

The output of Listing 4-9 is as shown here:

Hogenson_705-2C04.fm Page 51 Friday, October 13, 2006 2:22 PM

52 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42
for Microsoft (R) .NET Framework version 2.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

string_array_stack_semantics.cpp
string_array_stack_semantics.cpp(7) : error C3149: 'System::String' :
cannot use this type here without a top-level '^'
string_array_stack_semantics.cpp(8) : error C3149: 'cli::array<Type>' :
cannot use this type here without a top-level '^'
 with
 [
 Type=int
]

There is a risk of misusing these semantics, especially if you use the % operator to get the
underlying handle to your stack semantics variable. You must be careful that there are no
handles to the stack object that are retained after the function terminates. If you do retain a
handle to the object and then try to access the object, you may silently access a destroyed object.
The same dangers exist in calling delete on managed objects. You should try to use delete only
when you can be sure that there are no others holding handles to the object you are deleting.

The Unary % Operator and Tracking References
Suppose you’d like to use stack semantics, but you still have a function that takes a handle type.
Let’s say we have to call a method Report in the PlantQuery function, and that method takes a
handle to the DBConnection object. Now that we’re using stack semantics, we don’t have a
handle type, we have a bare object. Listing 4-10 is the function we’d like to call.

Listing 4-10. A Method Requiring a Handle

void Report(DBConnection^ connection)
{
 // Log information about this connection.
 // ...
}

In order to call this method, you need to pass a handle, not the instance variable, as the
connection parameter. You’ll have to use the unary % operator to convert the instance variable
to a handle, for example, to pass the variable to a function that takes a handle (see Listing 4-11).
The % operator is like the address-of operator for managed types that returns a handle to the
object, just as the address-of operator (&) in classic C++ returns a pointer to the object. The
address-of operator (&) is used for primitive types, such as int, although you can still assign to
a tracking reference. The % operator is used instead of the address-of operator for instances of
reference and value types.

Hogenson_705-2C04.fm Page 52 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 53

Listing 4-11. Using the % Operator

public ref class PlantData
{
 public:
 static Recordset^ PlantQuery(String^ search)
 {
 DBConnection connection;
 Report(%connection);
 return connection.Query(search);
 }
};

You can certainly see that the % operator is the managed analog of the & operator for native
types. The analogy extends also to the other use of the & symbol to represent a reference. Rather
like a tracking handle, you can use % to declare a tracking reference. Like a handle, a tracking
reference is updated whenever the garbage collector moves the object it is referencing. Tracking
references are somewhat more limited in use than native references. They can be used in function
arguments and declared on the stack, but they cannot be declared as a member of a class. They
can be used to refer to handles, value types, or value type members, but they cannot be used to
refer to objects of reference type directly (as opposed to through a handle). The declaration and
assignment to a variable might look like this:

int i = 110;
int% iref = i;
R r;
R% r_ref = r;

Just like a classic C++ reference, the tracking reference is another reference to the existing
object, so if you change the value of the object through the reference and access the object
through another means (such as the variable i itself in the foregoing example), the value is
changed. There is still only one value. Figure 4-1 shows what’s happening in memory.

Figure 4-1. A handle and a tracking reference designating the same object on the managed heap

Hogenson_705-2C04.fm Page 53 Friday, October 13, 2006 2:22 PM

54 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

With tracking references, we could have returned a handle as a parameter rather than
using the return value. Since a function can only have one return value, this is useful. In classic
C++, you might have used a double indirection to accomplish the same thing. The code in
Listing 4-12 shows the use of a tracking reference to a handle, which allows the handle to be
set in the function and retain its new value outside the function.

Listing 4-12. Using a Tracking Reference

 void Query(String^ search, Recordset^% records)
 {
 // Query the database, generate recordset,
 // and set the records handle to point to it.
 records = gcnew Recordset();
 }

The function would be called as in Listing 4-13.

Listing 4-13. Calling a Function with Tracking References

 static Recordset^ PlantQuery(String^ search)
 {
 DBConnection connection;
 Recordset^ records;
 connection.Query(search, records);
 return records;
 }

This example is a very typical use of tracking references. Without the tracking reference,
you could change the object in the function and have those changes preserved, but you would
not be able to make the handle reference a different object entirely or assign it to a newly
created object.

Dereferencing Handles
In classic C++, you dereference a pointer using the * operator. The same is true of handles in
C++/CLI. Subsequent assignment to a variable without a handle will result in a copy being made.
Dereferenced handles may be assigned to tracking references without a copy being made. If a
copy is made, there must be a copy constructor defined. Remember that copy constructors are
not defined automatically for reference types as they are for native types. Listing 4-14 shows
the basic syntax.

Listing 4-14. Dereferencing Handles

 R^ r_handle = gcnew R();
 R r_auto = *r_handle; // copy ctor used
 R% r_ref = *r_handle; // not copied

Hogenson_705-2C04.fm Page 54 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 55

Copy Constructors
Copy constructors take a tracking reference (%) as a parameter, as shown in Listing 4-15.

Listing 4-15. Using Tracking References with Copy Constructors

// passing_with_copy_ctor.cpp
using namespace System;

ref class R
{
 int val;
 String^ str;

 public:

 property int Value
 {
 int get() { return val; }
 void set(int i) { val = i; }
 }
 property String^ Label
 {
 String^ get() { return str; }
 void set(String^ s) { str = s; }
 }

 R(int val_in, String^ label) : val(val), str(label)
 { }

 R(const R% r)
 {
 // Copy the elements of R.
 // Value is a value type, so it gets copied.
 val = r.val;
 // Strings are immutable, so
 // a reference copy will work here even
 // in a copy ctor.
 str = r.str;
 }
};

Unlike in classic C++, there is no default copy constructor generated for a managed class,
so you need to define one explicitly in order to use this method of parameter passing. The
parameter to a copy constructor is normally declared const, although the language does not
enforce this. If you do use a const reference as a parameter, you cannot use properties in the
copy constructor, since properties take nonconstant parameters. The solution is to use the
fields directly in the body of the copy constructor, as in Listing 4-15.

Hogenson_705-2C04.fm Page 55 Friday, October 13, 2006 2:22 PM

56 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

Lvalues, GC-lvalues, Rvalues, and GC-rvalues
When working with tracking references, handle dereferencing, and so on, you’ll find it much
easier to understand how it all works if you know how the compiler understands whether a
given expression may be on the left or the right of an assignment. In classic C++, expressions
that are addressable may appear on the left side of an assignment. An addressable entity is one
that has a memory address associated with it, into which a value may be placed. Such an entity
is called an lvalue (see Listing 4-16). Other expressions, which may not be assigned to, are
referred to as rvalues. They may be used on the right side of an assignment, but not the left.

Listing 4-16. Using Lvalues

// lvalues.cpp

int main()
{
 int i;
 int j = 10; // "int j" is an lvalue.
 i = 15; // "i" is an lvalue.

 15 = 10; // Error: 15 is NOT an lvalue!
}

C++/CLI introduces the concept of a gc-lvalue, an lvalue that has a managed heap address.
All gc-lvalues are lvalues, but not all lvalues are gc-lvalues. In practical terms, this means that
you can always use a gc-lvalue to represent either managed or native data, but that you cannot
use an ordinary lvalue to represent managed data. gc-lvalues are different from lvalues in general
because the address of the value may be changed, since it could be moved around by the garbage
collection process; the ordinary lvalue is incapable of tracking this. Thus, to ensure type safety,
the compiler does not allow lvalues to represent addresses on the managed heap. A gc-rvalue
is an entity that can be the addressee of a managed heap address—these can appear on the
right side of assignment expressions where the left side is a gc-lvalue.

A native reference or native pointer cannot be used to refer to a gc-lvalue; instead, a handle
or tracking reference must be used to represent a gc-lvalue. Because value types may live on
the stack or may live inside a managed heap object, whether they are considered gc-rvalues
depends on where they are stored.

Listing 4-17 illustrates the various cases.

Listing 4-17. GC-lvalues and GC-rvalues

// gc_lvalues.cpp

value struct V
{
 int i;
};

Hogenson_705-2C04.fm Page 56 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 57

ref class R
{
 public:

 V m_v;

};

R^ GetRHandle() { return gcnew R(); }

int main()
{
 // i is an lvalue, 12 is an rvalue.
 int i = 12;

 // An lvalue i2; i is used here as an rvalue.
 // Lvalues can always be used as rvalues.
 int i2 = i;
 V v; // value type on the stack
 R r; // reference type (on the managed heap but with stack semantics)

 int& i3 = i; // native reference: an lvalue
 int% i4 = i; // Tracking reference: lvalues can be assigned gc-rvalues.
 int& i5 = v.i; // OK: v.i is a stack-based object.
 int& i6 = r.m_v.i; // Illegal: r is a managed heap-based object.
 i4 = v.i; // OK: i4 is a gc-lvalue.

 R^ r1, ^r2; // r1 and r2 are gc-lvalues.
 // gcnew R() is a gc-rvalue.
 r1 = gcnew R();
 // GetRHandle() is a gc-rvalue, too.
 r2 = GetRHandle();

 R% r3 = *r1; // A gc-lvalue r3 is assigned to the gc-rvalue *r1.
}

Compiling Listing 4-17 gives the following error:

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42
for Microsoft (R) .NET Framework version 2.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

gc_lvalues.cpp
gc_lvalues.cpp(32) : error C2440: 'initializing' : cannot convert from 'int' to
'int &'
 An object from the gc heap (member of a managed class) cannot be
 converted to a native reference

Hogenson_705-2C04.fm Page 57 Friday, October 13, 2006 2:22 PM

58 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

There is one interesting and useful variation on how you can hold references to objects
that you’ll want to know about: auto_handle, which is used for managed types that you want
treated like automatic variables that are not created in the function, but rather come from the
result of a function call.

auto_handle
Let’s say you want to use stack semantics, but you also need to get the instance back from a func-
tion call rather than creating it yourself. A typical example would be if a function call (sometimes
referred to as an object factory) is used to create instances and return a handle to them.

You can do this with an auto_handle, which is a handle that acts like an automatic variable.
auto_handle is a “managed template”—a template applied to a reference type. You’ll read more
about managed templates in Chapter 11. The auto_handle template takes one parameter: the
type of the handle. Listing 4-18 shows an example.

Listing 4-18. Using auto_handle

// auto_handle.cpp
#include <msclr\auto_handle.h>

using namespace System;
using namespace msclr;

ref class DBConnection
{
 public:
 bool Open()
 {
 // Open a database connection (actual code omitted).
 // ...
 return true;
 }
 void Close()
 {
 // Close the database connection.
 // ...
 }
};

ref class PlantData
{
 DBConnection^ connection;
 int id;

Hogenson_705-2C04.fm Page 58 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 59

 PlantData(int i) : id(i)
 {
 if (connection->Open() == true)
 {
 Console::WriteLine("Opened connection for id {0}.", id);
 }
 }

 public:

 static PlantData^ GetPlantData(int id)
 {
 return gcnew PlantData(id);
 }

 void Use()
 {
 Console::WriteLine("Using id {0}.", id);
 // Query database.
 // Update records, etc.
 }

 ~PlantData()
 {
 connection->Close();
 Console::WriteLine("Closing connection for id {0}.", id);
 }
};

// Using stack semantics: destructor called.
void f_stack(int i)
{
 auto_handle<PlantData> data = PlantData::GetPlantData(i);
 data->Use();
}

int main()
{
 f_stack(1);
}

The output verifies that the destructor is called when the auto_handle goes out of scope:

Opened connection for id 1.
Using id 1.
Closing connection for id 1.

Hogenson_705-2C04.fm Page 59 Friday, October 13, 2006 2:22 PM

60 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

So far in this chapter, you’ve seen reference types and value types, and the many different
ways of referring to objects in code. You’ve learned the semantic differences between these
methods, including objects with heap and stack semantics, tracking references, dereferencing
handles, copying objects, lvalues, and the auto_handle template. Now focus will turn to how
objects are passed to functions. As in classic C++, there are many ways to pass parameters, and
it’s important to know the semantic differences between all of them.

Parameter Passing
Just like classic C++, C++/CLI supports passing parameters by value and by reference. Let’s
review how this works in classic C++, as in Listing 4-19. Passing a parameter by value means
that the function gets a copy of the value, so any operations don’t affect the original object.
Passing a parameter by reference means that the object is not copied; instead, the function gets
the original object, which may consequently be modified. In C++, parameters passed with a
reference (&) to an object are passed by reference. That is to say, the object is not copied, and
any changes made to the object in the function are reflected in the object after the function
returns.

Listing 4-19. Passing by Value and by Reference in Classic C++

// parameter_passing.cpp

void byvalue(int i)
{
 i += 1;
}
void byref(int& i)
{
 i += 1;
}
int main()
{
 int j = 10;
 System::Console::WriteLine("Original value: " + j);
 byvalue(j);
 System::Console::WriteLine("After byvalue: " + j);
 byref(j);
 System::Console::WriteLine("After byref: " + j);
}

The output of Listing 4-19 is

Hogenson_705-2C04.fm Page 60 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 61

Original value: 10
After byvalue: 10
After byref: 11

because only the version that passes the parameter by reference actually affects the value of j
in the enclosing scope.

Figure 4-2 shows the basic characteristics of passing by value and by reference.

Figure 4-2. The left side shows the objects in the main method; the right side shows the copies
of those values in the function byvalue, and the native reference to the original value in the
function byref.

Where pointers are involved, the rules are the same, but thinking about them can be a bit
trickier. Let’s turn the clock back to the time when the C programming language reigned supreme.
Consider a somewhat dangerous C function, shown in Listing 4-20, that takes a pointer as a
parameter.

Listing 4-20. A Dangerous C Function

void stringcopy(char* dest, char* src)
{
 while (*dest++ = *src++);
}

The pointer src is modified within the function, but that does not affect the value outside
the function because the pointer is passed by value. In those cases where you need a pointer to
be modified, in C, you would use a double pointer (see Listing 4-21).

Hogenson_705-2C04.fm Page 61 Friday, October 13, 2006 2:22 PM

62 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

Listing 4-21. Using a Double Pointer in C

// double_pointer.cpp
#include <malloc.h>

int newstring(void** new_buffer)
{
 *new_buffer = malloc(1024);
 if (! *new_buffer) return -1;
 return 1;
}

This is still passing by value, because the address of the pointer is copied. When references
were introduced in C++, passing parameters by reference were made possible. For example,
the code in Listing 4-22 increments an integer passed in.

Listing 4-22. Passing by Reference

// passing_reference.cpp
void increment(int& i)
{
 i++;
}

If you wanted to pass a pointer by reference in classic C++, you would use *&, a reference
to a pointer.

void modify_pointer(CClass*& ptr);

These constructs have equivalents in the C++/CLI managed world. The handle symbol in
the parameter list is used for objects passed by reference.

void g(R^ r);

This is the normal way of passing reference types. This default makes sense for several
reasons. First, passing by value is expensive for larger objects. Primitive types and value types
are generally small, and the overhead of passing by value is not large, so value types are usually
passed by value, like this:

void f(V v);

Figure 4-3 shows the typical case of value types and reference types being passed to func-
tions. Because the local data is freed up when the function exists, any changes to the local data,
either the local value type or the local handle, are not reflected outside the function. A copy is
created of a value type passed to a function, in this case declared as f(V v_local), and a value
passed in with the expression f(v). Figure 4-3 also shows a reference type that was passed to a
function declared as g(R^ r_local) and a handle passed in with the expression g(r). The local
handle in g refers to the same object on the managed heap.

Hogenson_705-2C04.fm Page 62 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 63

Figure 4-3. Value types and reference types being passed to functions

Passing Reference Types by Value
To pass reference type objects by value, omit the handle symbol, as shown in the declaration of
the function h in Listing 4-23. While this is normal for a value type, it is also possible for a refer-
ence type as long as the reference type has a copy constructor.

Listing 4-23. Passing a Reference Type by Value

// pass_by_value.cpp
using namespace System;

ref struct R
{
 R()
 {
 val = 1;
 }

 // copy constructor
 R(R% r)
 {
 val = r.val;
 }

 property int val;
};

Hogenson_705-2C04.fm Page 63 Friday, October 13, 2006 2:22 PM

64 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

// R passed by value (no ^)
void f(R r_local)
{
 // Modify r without affecting outer scope.
 r_local.val = 2;
 Console::WriteLine("Within f: " + r_local.val);
}

int main()
{
 R r;
 f(r);
 Console::WriteLine("Outside f: " + r.val);

 // The same code, using heap semantics
 R^ rhat = gcnew R();
 f(*rhat); // Dereference the handle.
 Console::WriteLine("Outside f: " + rhat->val);
}

The output of Listing 4-23 is as follows:

Within f: 2
Outside f: 1
Within f: 2
Outside f: 1

Figure 4-4 shows what’s happening in memory for this type of parameter passing.

Figure 4-4. The main method declares R r and passes by value to f(R r_local). The copy constructor
is invoked, creating another copy of the reference type object on the managed heap.

Hogenson_705-2C04.fm Page 64 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 65

Passing Value Types by Reference
Parameters normally passed by value (such as primitive types and value types) may be passed
by reference using the % symbol in the parameter declaration. This is useful if you want to write
a function that changes a value type, such as in Listing 4-24.

Listing 4-24. Changing a Value Type in a Function

// pass_by_ref.cpp
using namespace System;

value class Pair
{
 public:
 int x;
 int y;
};

void swap_values(Pair% pair)
{
 int temp = pair.x;
 pair.x = pair.y;
 pair.y = temp;
}

int main()
{
 Pair p;
 p.x = 5;
 p.y = 3;
 Console::WriteLine("{0} {1}", p.x, p.y);
 swap_values(p);
 Console::WriteLine("{0} {1}", p.x, p.y);
}

The output of Listing 4-24 is shown here:

5 3
3 5

Figure 4-5 shows the memory layout for the preceding example.

Hogenson_705-2C04.fm Page 65 Friday, October 13, 2006 2:22 PM

66 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

Figure 4-5. The swap_values method contains a reference pair to main’s copy of p as well as a local
integer variable to hold a temporary value.

Temporary Handles
In Listing 4-12, you saw how you could pass a handle by reference using the ^% indirection. In
Listing 4-25, you see that a reference type object with stack semantics isn’t affected by a function
that takes a reference to a handle if you use the tracking reference operator (%) to create a
handle to the object. This is because the handle obtained with the % operator is a different,
temporary handle. As a result, an object with stack semantics always represents the original
object, so you can be assured that the correct object is cleaned up at the end of the block.

Listing 4-25. C++/CLI Stack Semantics

// pass_by_ref2.cpp
// This example illustrates that a stack semantics
// reference type can't be redirected by a function
// that operates on references to handles.
using namespace System;

ref struct R
{
 property int A;
 R(int a) { this->A = a; }
};

// Takes a reference to a handle
void reset_handle(R^% r)
{
 r = gcnew R(5);
}

int main()
{
 R r(2); // stack semantics
 reset_handle(%r); // Use % to create a handle.

 // The output is 2, since the handle passed to f

Hogenson_705-2C04.fm Page 66 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 67

 // was a temporary one, so it didn't get changed by
 // the function f.

 Console::WriteLine("Value: {0}", r.A);
}

It’s worth having a solid understanding of the semantics of parameter passing. Using what
you’ve seen so far, see if you can predict the output of Listing 4-26.

Listing 4-26. What Does This Output?

// pass_by_ref3.cpp
// This example requires some careful thought.
// Can you figure out what the final output
// will be?
using namespace System;

ref struct R
{
 property int A;
 R(int a) { this->A = a; }
};

// Takes a reference to a handle. This function
// sets the property value on the object, then
// overwrites the object!
// Will the object in the calling scope
// have the value 3, or 5, or will it retain its
// original value?
void reset_handle(R^% r)
{
 r->A = 3;
 r = gcnew R(5);
}

int main()
{
 R r_stack(1); // stack semantics
 R^ r_heap = gcnew R(2); // heap semantics

 reset_handle(%r_stack); // Use % to create a handle.
 reset_handle(r_heap);

 Console::WriteLine("Final value, stack semantics: {0}", r_stack.A);
 Console::WriteLine("Final value, heap semantics: {0}", r_heap->A);
}

Hogenson_705-2C04.fm Page 67 Friday, October 13, 2006 2:22 PM

68 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

The stack semantics variable is converted to a handle using the unary % operator before
being passed into the function. The function operates on a reference to the handle. Changing
the object through this handle does affect the object, since the object itself is never copied. The
subsequent action to reset the object handle does affect the heap handle, since it is passed in
directly, but it does not affect the temporary handle to the stack object created using the unary
% operator. Thus, the stack variable still points to the original object, with the property value set
to 3, but the heap variable points to a new object with the property value 5. So the output of
Listing 4-26 is as follows:

Final value, stack semantics: 3
Final value, heap semantics: 5

Passing Value Types As Handles
Value classes may also be used in a parameter list as a handle. If you use a handle to a value
class as a parameter, you also use the unary % operator to pass the value. This creates a temporary
copy that the function uses. If you modify the object in the function, the changes do not persist
outside the function (see Listing 4-27).

Listing 4-27. Using a Handle to a Value Type

// handle_to_valuetype.cpp

using namespace System;

value struct V
{
 int a;
 int b;
};

// function taking a handle to a value type
void f(V^ v)
{
 v->a = 10;
 v->b = 20;
}

int main()
{
 V v;
 v.a = 1;
 v.b = 2;
 f(%v); // creates a copy of v
 Console::WriteLine("{0} {1}", v.a, v.b);
}

Hogenson_705-2C04.fm Page 68 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 69

The output of Listing 4-27 is

1 2

showing that the original value type was not changed by the function call.
The way to think of this is that both reference and value types support parameter passing

using handles or using objects. For reference types, there is a real difference between the two.
When passed as a handle, they are passed by reference. When passed as an object, they are
passed by value. Value types, on the other hand, are passed by value regardless of whether the
syntax involves the use of handles or objects (or even references to handles). However, they
can be passed by reference using a tracking reference parameter type, as Listing 4-28 shows.

Listing 4-28. Passing a Value Type by Reference

// valuetype_trackingref.cpp
using namespace System;

value struct V
{
 int a;
 int b;
};

void f(V% v)
{
 v.a = 10;
 v.b = 20;
}

int main()
{
 V v;
 v.a = 1;
 v.b = 2;
 f(v);
 Console::WriteLine("{0} {1}", v.a, v.b);
}

The output of Listing 4-28 is as follows:

10 20

Hogenson_705-2C04.fm Page 69 Friday, October 13, 2006 2:22 PM

70 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

This distinction will be important later when you look at generics, since it is possible for a
generic class to use either a reference or a value type, and it’s important to be aware of the
different semantics that each has, particularly when you don’t know whether one or the other
will be used as the type parameter of a generic type.

Summary of Parameter-Passing Semantics
Table 4-1 summarizes the semantics of parameter passing.

Do’s and Don’ts of Returning Values
Handles may be used as return values, just as pointers can be. Tracking references may also be
used as return values, as long as you take care not to return a reference to a temporary variable.
Objects that are to be destroyed at the end of a function call, such as reference types declared
using stack semantics, should not be returned as a tracking reference, since they will be
destroyed when the function scope ends. If the return type is an object type (not a handle),
then it must have a copy constructor. Listing 4-29 illustrates several return value scenarios.

Table 4-1. Parameter-Passing Semantics

Function
Signature

Argument Type Use This Syntax
in Calling Code

Semantics

f(R r) Handle to reference type
(R^ handle)

f(*handle) Object copied (requires
copy constructor).

f(R r) Reference type with stack
semantics (R obj)

f(obj) Object copied (requires
copy constructor).

f(R^ r) Handle to reference type
(R^ handle)

f(handle) Object not copied; handle
copied.

f(R^ r) Reference type with stack
semantics (R obj)

f(obj) Object not copied.

f(R^% r) Handle to reference type
(R^ handle)

f(handle) Handle not copied.

f(R^% r) Reference type with stack
semantics (R obj)

f(%obj) Handle copied.

f(V v) Value type f(obj) Object copied.

f(V^ v) Value type f(%obj) Object copied.

f(V^% v) Value type f(%obj) Object copied.

f(V% v) Value type f(obj) Object not copied.

Hogenson_705-2C04.fm Page 70 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 71

Listing 4-29. Returning Values

// return_values.cpp
using namespace System;

ref class R
{
 bool destroyed;
 public:
 R() { }
 R(const R% r) { } // copy constructor

 R% GetTrackingRefMF();
 void PrintR()
 {
 if (destroyed)
 Console::WriteLine("Using destroyed object!");
 else
 Console::WriteLine("R");
 }

 ~R() { destroyed = true; }
};

value struct V
{
 int a;
 int b;
};

// Handle return value: OK
R^ GetHandle()
{
 // Create a new R.
 R^ r = gcnew R();
 // Return it.
 return r;
}

// Return reference to local variable.
// -- avoid
R% GetTrackingRef()
{
 // Create a new R.
 R^ r = gcnew R();
 return *r; // compiler warning
}

Hogenson_705-2C04.fm Page 71 Friday, October 13, 2006 2:22 PM

72 C H A P T E R 4 ■ O B J E C T S E M A N T I C S I N C + + / C L I

// Return reference to local variable.
// -- avoid
R% GetTrackingRef_Bad()
{
 R r;
 return r; // compiler warning
}

// OK: return a nontemporary reference.
R% R::GetTrackingRefMF()
{
 return *this;
}

// Value type return value: OK
V GetValue()
{
 V v;
 v.a = 100;
 v.b = 54;
 // Value gets copied.
 return v;
}

// Return value with stack semantics.
// Requires copy constructor
R GetR()
{
 R r;
 return r; // requires copy constructor
}

int main()
{
 // Valid uses:
 R^ r1 = GetHandle(); // OK
 R% r2 = r1->GetTrackingRefMF(); // OK
 V v1 = GetValue(); // OK
 Console::WriteLine("{0} {1}", v1.a, v1.b);

 R r3 = GetR(); // OK only if R has a copy constructor

Hogenson_705-2C04.fm Page 72 Friday, October 13, 2006 2:22 PM

C H A P T E R 4 ■ O B JE C T S E M A N T I C S I N C + + / C L I 73

 // Using a tracking reference in the GetTrackingRef function works,
 // but a handle would work as well and would eliminate the compiler
 // warning in the function declaration.
 R% r4 = GetTrackingRef();
 r4.PrintR();

 // Using the tracking reference here is not OK
 // since the destructor was called.
 R% r5 = GetTrackingRef_Bad();
 r5.PrintR();

}

The output of Listing 4-29 is shown here:

100 54
R
Using destroyed object!

This code illustrates several return value possibilities using handles, references, and value
types. Just as it is not a good idea to return references to local variables in classic C++, returning
tracking references to local variables is not a good idea in C++/CLI since the destructor is called
for local variables, leaving the caller with a reference to a destructed object. Instead, create
a permanent object (with gcnew) and return a handle. This is particularly important for C#
programmers since C# allows references to be returned from functions. This works in C# since
C# doesn’t have the concept of stack semantics for reference types.

Summary
In this chapter, you looked at reference types and value types and at the many different ways of
referring to objects in code. You saw the semantic differences between these methods, including
objects with heap and stack semantics, tracking references, dereferencing handles, copying
objects, gc-lvalues, and the auto_handle template. You also looked at passing parameters in
various ways, the behavior of C++/CLI handles and tracking references as function parameters,
and using handles and references as return values.

Now you’ll learn about some fundamental, but special, types: strings, arrays, and enums.

Hogenson_705-2C04.fm Page 73 Friday, October 13, 2006 2:22 PM

Hogenson_705-2C04.fm Page 74 Friday, October 13, 2006 2:22 PM

75

■ ■ ■

C H A P T E R 5

Fundamental Types: Strings,
Arrays, and Enums

In this chapter, you’ll learn about some special types in the C++/CLI type system. I have been
using the term primitive type to refer to the built-in integral and floating-point types. Other
types, such as those discussed in this chapter, are built upon these primitive types and are
fundamental to any program. Each of these types is a .NET version of a classic C++ concept,
and each of these has special language support in addition to being a bona fide .NET Frame-
work object type. The chapter will go into some detail not just on the syntax and mechanics of
the types themselves, but also some of the commonly used .NET Framework library function-
ality related to these types.

My primary aim in this book is to focus on the C++/CLI language itself, not the .NET
Framework. However, input and output is so fundamental to any language that it’s worth
discussing on its own, and what better place to discuss it than in the context of strings? Input
and output of text are necessary for almost any application, not just an old-style console appli-
cation. You might need to output text to a string for display in a user interface or for a formatted
file. Output usually involves manipulating strings, so this chapter first looks in depth at the
String type. The String type is the one that actually provides much of the formatting capability
needed in output, whether it’s to the console or a web application or a graphical user interface.

Strings
The String type is a reference type that consists of a sequence of Unicode characters representing
text. The class has many useful instance methods and many static methods that support
copying and manipulation of strings. The String class represents an immutable sequence of
characters; methods that manipulate strings do not modify them in-place, they create new,
modified versions of the strings. Even those methods that suggest that they modify the string
(such as Insert, Remove, Replace, etc.) create new strings. If you need a string that is modifiable
in-place, use the StringBuilder class.

Let’s start with a few basics. To create a simple string, write code like the following:

String^ str = gcnew String("Text");
String^ str1 = "Text";

Hogenson_705-2C05.fm Page 75 Friday, October 13, 2006 2:39 PM

76 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

In the first statement, we explicitly spell out the String constructor with a string literal
argument. In the second statement, the right side is a string literal. Historically, in Visual C++,
if you use the prefix L in front of the string, the string literal is interpreted as Unicode. C++/CLI
interprets string literals as narrow 1-byte characters or wide 2-byte Unicode characters depending
on the context. If a string literal is immediately assigned to a String, it is interpreted as a wide
character string literal even without the L prefix. In any event, the String class always refers to
a Unicode string, and an automatic conversion from a string literal is defined in C++/CLI, so
when the string literal is assigned to a string handle, the result is a handle to a Unicode string.
Because of the context-dependent nature of string literals, it is sometimes said that the type of
a string literal is inexpressible in the language. In practical terms, it simply means that you can
use string literals without a lot of fussing about the types involved.

To concatenate two strings, use the static method String::Concat, as follows:

String^ str = String::Concat(str1, str2);

What this does is create a new String object, str, that is the concatenation of str1 and
str2. The str1 and str2 objects themselves are left unmodified.

To get at a single character in a string, use the Chars indexed property, as follows:

char c = str1->Chars[5];

You’ll read more about indexed properties in Chapter 7; the indexed property Chars allows
array-indexing syntax to be used on the property.

To copy a string, you can either make another reference to the same string or copy the
string. Depending on your application, one or the other might make the most sense. The
assignment operator creates another reference to the same string. This is what is meant by a
shallow copy. The Copy member function creates a new string, which is known as a deep copy.
Since String objects cannot be modified, multiple references to the string will retain the
correct value; thus it is usually not necessary to copy the string.

However, to compare strings, you must be aware of whether you’re comparing the refer-
ence (testing for reference equality) or the characters of the strings themselves. The equality
operator (==) is equivalent to the Equals method, and both test for equality of a string’s value.
The example in Listing 5-1 demonstrates this.

Listing 5-1. Comparing Strings

// string_equality.cpp
using namespace System;

int main()
{
 String^ str1 = "1";
 String^ str2 = "1";
 String^ str3 = str1;

Hogenson_705-2C05.fm Page 76 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 77

 // All of the following tests result in True, since
 // the == operator is equivalent to the Equals method.
 if (str1 == str2)
 {
 Console::WriteLine(" str1 == str2");
 }
 if (str1 == str3)
 {
 Console::WriteLine(" str1 == str3");
 }
 if (str1->Equals(str2))
 {
 Console::WriteLine(" str1 Equals str2");
 }
 if (str1->Equals(str3))
 {
 Console::WriteLine(" str1 Equals str3");
 }

 // ReferenceEquals compares the handles, not the actual
 // string. The results are implementation dependent,
 // since if the compiler creates a single-string representation
 // for both string literals, as is the case here, this will resolve
 // true.
 if (String::ReferenceEquals(str1, str2))
 {
 Console::WriteLine(" str1 ReferenceEquals str2");
 }
 if (String::ReferenceEquals(str1, str3))
 {
 Console::WriteLine(" str1 ReferenceEquals str3");
 }
}

The output of Listing 5-1 is as follows:

 str1 == str2
 str1 == str3
 str1 Equals str2
 str1 Equals str3
 str1 ReferenceEquals str2
 str1 ReferenceEquals str3

To get the string as an array of characters, you can convert it to a character array using the
ToCharArray method, as shown in Listing 5-2. Unlike the Chars property, this creates a new
array of System::Char that contains a copy of each character in the string. System::Char is also
known as wchar_t, the Unicode character type.

Hogenson_705-2C05.fm Page 77 Friday, October 13, 2006 2:39 PM

78 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Listing 5-2. Converting a String to a Character Array

// string_tochararray.cpp
using namespace System;

int main()
{
 String^ str = "A quick sly fox jumped over the lazy brown dog.";

 array<Char>^ character_array = str->ToCharArray();

 // Print the original string.
 Console::WriteLine(str);

 // Modify characters in the character array.
 for (int i = 0; i < character_array->Length; i++)
 {
 if (character_array[i] >= L'a' && character_array[i] <= 'z')
 {
 character_array[i] -= (L'a' - L'A');
 }
 }

 // Convert back to a String using the String constructor
 // that takes a Unicode character array.
 str = gcnew String(character_array);

 // Print the modified string:
 // A QUICK SLY FOX JUMPED OVER THE LAZY BROWN DOG.
 Console::WriteLine(str);
}

The output of Listing 5-2 is shown here:

A quick sly fox jumped over the lazy brown dog.
A QUICK SLY FOX JUMPED OVER THE LAZY BROWN DOG.

Or, if you need to iterate over characters in a string, use the for each statement, as in
Listing 5-3.

Listing 5-3. Looping Through a String

// string_foreach.cpp
using namespace System;

Hogenson_705-2C05.fm Page 78 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 79

int main()
{
 String^ str1 = "Ode on a Grecian Urn";

 for each (Char ch in str1)
 {
 Console::Write(ch);
 }
 Console::WriteLine();
}

Here’s the output of Listing 5-3:

Ode on a Grecian Urn

This code works because first, the String class implements the interface IEnumerable,
and second, the GetEnumerator function returns a CharEnumerator, a class that implements
IEnumerator. IEnumerator includes a property, Current, which in the case of CharEnumerator,
returns a Char (which, as mentioned earlier, is the same as wchar_t).

String Operators
C++/CLI supports, for convenience, the use of the + operator on strings, string literals, and
other entities that can be converted to strings (which includes any managed type, since Object
defined the ToString method that other objects inherit). The result is the concatenation of the
strings. In this way you can build up an output string using concatenation, rather than using
the format string. This is not generally a good idea for applications that must be localized into
other languages, since the different word order of different languages may mean that the order
of concatenation is language dependent.

Listing 5-4 shows the use of the string concatenation operator.

Listing 5-4. Concatenating Strings

// string_operator_plus.cpp
using namespace System;

int main()
{
 String ^hrs = "Hours", ^mins = "Minutes";
 wchar_t separator = ':';
 int minutes = 56, hours = 1;

 Console::WriteLine(hrs + separator + " " + hours + "\n" + mins +
 separator + " " + minutes);
}

Hogenson_705-2C05.fm Page 79 Friday, October 13, 2006 2:39 PM

80 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

The output of Listing 5-4 is as follows:

Hours: 1
Minutes: 56

The addition operator works from left to right, so as long as the first operand is a string,
each operand in the series will be converted to a string, even if some part of the expression
could also be interpreted as another type of addition (such as adding integers). The ToString
function is used to convert types to strings. The string concatenation operator works with all
managed types, since all managed types inherit the ToString operator from System::Object.
Strings that are editable (also called mutable) should be instances of StringBuilder rather than
String. You’ll learn more about StringBuilder strings later in this chapter.

Comparing Strings
Strings implement IComparable, so they support the CompareTo method to compare to another
string. You can also use the static method, Compare, to compare two strings. The version of the
Compare static method that takes only two strings as parameters and the CompareTo method use
the same comparison algorithm, but the Compare static method is overloaded and has several
variations that allow the comparison to be customized. The CompareTo method, for any object
that implements IComparable, returns a value representing one of three possibilities. A negative
return value indicates that the first object is less than the second. A zero return value indicates
that the two objects are equal. A positive return value indicates that the first object is greater
than the second. For the CompareTo method, the first object is the object whose instance method is
being called; for the static method, the first object is the first argument. Listing 5-5 shows the
basic use of string comparison.

Listing 5-5. Comparing Strings with CompareTo

// string_compare.cpp
using namespace System;

int main()
{
 String^ str1 = "cat";
 String^ str2 = "cab";

 if (str1->CompareTo(str2) < 0)
 {
 Console::WriteLine(str1 + " is less than " + str2);
 }
 // For variety, use the static method.
 else if (String::Compare(str1, str2) > 0)
 {
 Console::WriteLine("{0} is less than {1}", str2, str1);
 }

Hogenson_705-2C05.fm Page 80 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 81

 else if (str1->CompareTo(str2) == 0)
 {
 Console::WriteLine("The strings are both equal, with value {0}.", str1);
 }
}

Here is the output of Listing 5-5:

cab is less than cat

Implementing the IComparable interface allows strings to be used in all sorts of container
classes where comparison is a requirement. For example, in Chapter 11, you’ll see how to
define a generic collection class that has a constraint indicating that any class used in the
generic collection must implement IComparable. This allows the author of the generic class to
assume certain functionality, such as the existence of the CompareTo method.

The CompareTo method alone isn’t rich enough to support all the factors that might be rele-
vant in comparing strings in real-world code. Sometimes comparison must be case sensitive,
other times comparison must be case insensitive. Additionally, comparison in some applica-
tions must be sensitive to culture, since alphabets and alphabetical order are dependent on
locale. The CompareTo method also includes overloads that support comparison of substrings.
There’s also a CompareOrdinal method that is useful if the strings represent numbers and you
want a comparison of the number.

Formatting Strings
The Format methods format a string for output. The .NET Framework formatting support is
very rich, supporting a highly customizable output format and providing an extensible frame-
work for defining your own custom formats as well. The same formatting rules are used for the
Console class’s WriteLine method for output to the console.

The string used to specify the desired formatting and that acts as a template for the output
is called the format string. The format string contains placeholders that are numbered starting
with zero and surrounded by curly braces, as in the following string:

Console::WriteLine("The population of {0} is {1}.", "Pleasantville", 500);

This code substitutes Pleasantville for the {0} and 500 for the {1}. The type of the argu-
ment need not be supplied, as the language contains enough type information without any
further specification.

The number in curly braces is referred to as the index. It is followed, optionally, by a comma
and number specifying the minimum width of the field. The sign of the number specifies the
justification (positive for right-justification, negative for left-justification). One can also append a
colon and a formatting string that is used to customize the output format. The available formatting
strings are dependent on the type. A variety of formatting codes exists for formatting numeric
output, as well as date, time, and currency output, which is dependent on the locale. The
following sections provide detailed examples.

Hogenson_705-2C05.fm Page 81 Friday, October 13, 2006 2:39 PM

82 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

The Width Field (or Alignment Specifier)

Listing 5-6 provides some examples of formatting using the width field, including a negative
width indicating left justification, and a currency formatting string—the c2 following the colon
in the Price column, which is ignored when used with a string.

Listing 5-6. Formatting Strings Using the Width Field

// string_alignment_specifier.cpp
using namespace System;

int main()
{
 // The format string is interpreted as follows:
 // { 0, -30 } 30 characters in width, left-justified.
 // { 1, 10 } 10 characters in width, right-justified.
 // { 2, 10:c2 } 10 characters in width, currency with 2 decimal places.
 String^ format = "{0,-30}{1,10}{2,10:c2}";
 String^ header = String::Format(format, "Item", "Quantity", "Price");
 String^ str1 = str1->Format(format, "Matches, Strike Anywhere", 10, 0.99);
 String^ str2 = str2->Format(format, "Gloves", 1, 12.50);
 String^ str3 = str3->Format(format, "Iodine", 1, 4.99);

 Console::WriteLine(header);
 Console::WriteLine(str1 + "\n" + str2 + "\n" + str3);
}

The output of Listing 5-6 on U.S. English systems is as follows:

Item Quantity Price
Matches, Strike Anywhere 10 $0.99
Gloves 1 $12.50
Iodine 1 $4.99

Numeric String Formatting
Formatting in C runtime functions such as printf involves the use of formatting characters for
various data types and, in particular, certain formatting characters for decimal or hexadecimal
output, exponential format, and so on. The usual numeric formatting characters from C are
supported, as well as additional formats for currency, and a special round-trip format specifi-
cally to ensure accurate results when reading the data back in using the Read or ReadLine methods.
The code in Listing 5-7 shows the typical use of these formats. The formatting specifier follows
the colon after the index (and optional alignment specifier specifying the width of the field) in
the format string. In the following example, the alignment specifier is not used, and the index
is always zero since we only have one variable to format.

Hogenson_705-2C05.fm Page 82 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 83

Listing 5-7. Formatting Numeric Strings

// string_numerical_formatting.cpp
using namespace System;

int main()
{
 String^ str;
 int i = -73000;
 double dbl = 1005.01;

 // Formats for floating-point types:

 str = String::Format("Currency format: {0:c2}", dbl);
 Console::WriteLine(str);

 str = String::Format("Scientific format: {0:e6}", dbl);
 Console::WriteLine(str);

 str = String::Format("Fixed-point format: {0:f6}", dbl);
 Console::WriteLine(str);

 str = String::Format("General format: {0:g6}", dbl);
 Console::WriteLine(str);

 str = String::Format("Number format: {0:n6}", dbl);
 Console::WriteLine(str);

 str = String::Format("Percent format: {0:p6}", dbl);
 Console::WriteLine(str);

 str = String::Format("Round-trip format: {0:r6}", dbl);
 Console::WriteLine(str);

 // Formats for integral types:

 str = String::Format("Decimal format: {0:d6}", i);
 Console::WriteLine(str);

 str = String::Format("General format: {0:g6}", i);
 Console::WriteLine(str);

 str = String::Format("Number format: {0:n0}", i);
 Console::WriteLine(str);

 str = String::Format("Hexadecimal format: {0:x8}", i);
 Console::WriteLine(str);
}

Hogenson_705-2C05.fm Page 83 Friday, October 13, 2006 2:39 PM

84 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Here is the output of Listing 5-7:

Currency format: $1,005.01
Scientific format: 1.005010e+003
Fixed-point format: 1005.010000
General format: 1005.01
Number format: 1,005.010000
Percent format: 100,501.000000 %
Round-trip format: 1005.01
Decimal format: -073000
General format: -73000
Number format: -73,000
Hexadecimal format: fffee2d8

StringBuilder
For manipulation and editing of strings in-place, you need to use StringBuilder rather than
String. StringBuilder contains methods for appending, inserting, removing, and replacing
elements of a string (see Listing 5-8). StringBuilder maintains an internal buffer with a given
capacity and expands this capacity as the size of the string increases.

Listing 5-8. Using StringBuilder

// stringbuilder.cpp

using namespace System;
using namespace System::Text;

int main()
{
 // Construct a StringBuilder string with initial contents
 // "C" and initial capacity 30.
 StringBuilder^ sb = gcnew StringBuilder("C", 30);

 sb->Append(gcnew array<Char>{'+','+'});

 sb->Append("/CLI.");

 sb->Insert(0, "I love ");

 sb->Replace(".","!");

 Console::WriteLine(sb->ToString());
}

The output of Listing 5-8 is as follows:

Hogenson_705-2C05.fm Page 84 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 85

I love C++/CLI!

Refer to the documentation for the .NET Framework or CLI Base Class Library for further
information.

Conversions Between Strings and Other Data Types
You’ve seen many examples of rendering primitive types as strings. What about converting
from a string to a primitive type? System::String implements IConvertible, which means it
supports conversions to a variety of types using functions such as ToBoolean, ToInt32, and so
on. Also, the object wrappers for the primitive types support the ability to parse strings. There
are static methods called Parse on the classes for the primitive types that take a string to be parsed
as a parameter and return an object of the numeric type. Listing 5-9 provides some examples.

Listing 5-9. Converting Strings to Primitive Types

// convert_and_parse.cpp

using namespace System;

int main()
{
 String^ str1 = "115";
 String^ str2 = "1.4e-12";

 // Parse the string to get the integer value.
 int i = Int32::Parse(str1);

 // Get the double value.
 double x = Double::Parse(str2);

 // Use Convert class to convert the value.
 int j = Convert::ToInt32(str1);
 double y = Convert::ToDouble(str2);

 // Exception handlers may be used to catch parse failures and overflows.

 try
 {
 int k = Int32::Parse("bad format");
 }
 catch(FormatException^ e)
 {
 Console::WriteLine("Exception occurred! {0}", e->Message);
 }
}

Hogenson_705-2C05.fm Page 85 Friday, October 13, 2006 2:39 PM

86 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

The output of Listing 5-9 is as follows:

Exception occurred! Input string was not in a correct format.

Input/Output
The System::Console class supports basic input and output to the console.

Basic Output
The CLI Library (or .NET Framework) provides the System::Console class for performing most
simple I/O functions. You’ve been using the WriteLine method for quite some time now. WriteLine
has an overload that uses the same format string and variable argument list as String::Format.
All the formatting rules described earlier for String::Format apply to Console::WriteLine and,
incidentally, to Console::Write, which is just like WriteLine except that it does not automati-
cally append a newline to its output.

Other overloads of WriteLine and Write omit the format parameter and simply output a
representation of the object rendered as text in the default format. Write and WriteLine contain
overloads that take all of the primitive types as well as arrays of Char (wchar_t).

Listing 5-10 uses various overloads of Write and WriteLine.

Listing 5-10. Using Write and WriteLine

// writeline.cpp

using namespace System;

int main()
{
 // output without newline
 Console::Write("a");
 Console::Write("b");
 Console::Write("c");

 // newline alone
 Console::WriteLine();

 // output with format string
 Console::WriteLine("Fourscore and {0} years ago.", 7);

 // output with direct types
 Console::WriteLine(7);
 Console::WriteLine(1.05);
 Console::WriteLine('A');
}

Hogenson_705-2C05.fm Page 86 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 87

The output of Listing 5-10 is as follows:

abc
Fourscore and 7 years ago.
7
1.05
65

Out, Error, and In
The Console class exposes the Out, Error and In properties as abstractions for the standard
filestreams stdout, stderr, and stdin. Out, Error, and In are represented as objects of the
System::IO::TextWriter and TextReader classes.

Basic Input with Console::ReadLine
Use Console::ReadLine to read from standard input (stdin). When the end of input is reached,
ReadLine returns nullptr, as shown in Listing 5-11.

Listing 5-11. Reading from Standard Input

// to_upper.cpp
// Convert text read from stdin to uppercase and write to stdout.
using namespace System;

int main()
{
 String^ str;
 while ((str = Console::ReadLine()) != nullptr)
 {
 Console::WriteLine(str->ToUpper());
 }
}

Reading and Writing Files
StreamWriter is the class used for output to files. StreamWriter supports the Write and WriteLine
methods, and StreamReader supports the Read and ReadLine methods for input and output to
files in a variety of formats. These classes allow you to specify the encoding of the output file,
so you can write easily to ASCII or Unicode UTF-8, UTF-16, and other encodings.

A StreamWriter may be opened with a file name or the File class, which has static methods
for creating or opening files (see Listing 5-12).

Hogenson_705-2C05.fm Page 87 Friday, October 13, 2006 2:39 PM

88 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Listing 5-12. Using StreamWriter

 StreamWriter^ sw = gcnew StreamWriter("textfile.txt");
 sw->WriteLine("Can code be poetry?");
 sw->Flush();
 sw->Close();

 // The File class's CreateText static method is used to
 // create a text file.
 StreamWriter^ sw2 = File::CreateText("newtextfile.txt");

To read text, use the StreamReader class (see Listing 5-13).

Listing 5-13. Using StreamReader

 StreamReader^ sr = gcnew StreamReader("textfile.txt");
 String^ line;
 // Read each line and write it out to the console.
 while ((line = sr->ReadLine()) != nullptr)
 {
 Console::WriteLine(line);
 }

Whenever you deal with files, of course, you cannot neglect proper error handling. The
.NET Framework classes throw exceptions of type System::IO::IOException to indicate error
conditions, so you would normally use a try/catch block around any attempt to work with a
file. This code is a typical example: the exception has a Message property that contains an infor-
mative error message, as in Listing 5-14.

Listing 5-14. Using an Exception’s Message Property

 String^ filename = "textfile.txt";
 try
 {
 // Another way of creating a StreamReader class is with
 // static methods of the File class.
 StreamReader^ sr2 = File::OpenText(filename);

 String^ line;
 // Read each line and write it out to the console.
 while ((line = sr2->ReadLine()) != nullptr)
 {
 Console::WriteLine(line);
 }
 }
 catch(IOException^ e)
 {
 Console::WriteLine("Exception! {0}", e->Message);
 }

Hogenson_705-2C05.fm Page 88 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 89

I’ve only scratched the surface here, to give you some of the simplest examples. Refer to
the documentation for the .NET Framework for all the methods of the File, StreamWriter,
StreamReader, and related classes to learn more.

Reading and Writing Strings
StringWriter and StringReader provide support for writing and reading strings using the same
interfaces used for writing to streams and files. The use of this class is straightforward, as
demonstrated in Listing 5-15, which uses some of my wife’s poetry, this one inspired by Seattle’s
Pike Place market.

Listing 5-15. Writing Poetry with StringWriter

// stringwriter.cpp

// The Windows Forms namespace lives in a different
// assembly, which is not referenced by default as is
// mscorlib.dll, so we must use #using here.
#using "System.Windows.Forms.dll"

using namespace System;
using namespace System::IO;
using namespace System::Text;
using namespace System::Windows::Forms;

int main()
{
 StringWriter^ sw = gcnew StringWriter();
 sw->WriteLine("Pike Place");
 sw->WriteLine("Street of Dreams");
 sw->WriteLine("(C) 2006 Jeni Hogenson");
 sw->WriteLine();

 sw->Write("Walking with bare feet\n");
 sw->Write("Seattle streets, gospel beat,\n");
 sw->Write("She's got magic\n");
 sw->WriteLine();

 sw->WriteLine("Bag of black upon her back\n" +
 "A sensual blend, soul food that is;\n" +
 "Local color.");
 sw->WriteLine();

 String^ jambo = "jambo";
 String^ s = String::Format("Open the bag, {0}, {1}.", jambo, jambo);
 sw->WriteLine(s);
 sw->Write("Make a wish, {0}, {0}.", jambo);
 sw->WriteLine();

Hogenson_705-2C05.fm Page 89 Friday, October 13, 2006 2:39 PM

90 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

 s = "Feel it, grab it, grope it.\n";
 String::Concat(s, "Follow every curve.\n");
 String::Concat(s, "Can you wait to find it?\n");
 String::Concat(s, "Do you have the nerve?");
 sw->WriteLine(s);

 sw->WriteLine("A drop of oil, jambo, jambo.");
 sw->WriteLine("Whisper in her ear,");
 sw->WriteLine("Ask the question in your heart");
 sw->WriteLine("that only you can hear");
 sw->WriteLine();

 StringBuilder^ sb = gcnew StringBuilder();
 sb->Append("Fingers now upon your ears,\n");
 sb->Append("Waiting for the space\n");
 sb->Append("An answer if you're ready now\n");
 sb->Append("From the marketplace\n");
 sw->WriteLine(sb);

 sw->WriteLine("The call of a bird, jambo, jambo.");
 sw->WriteLine("The scent of a market flower,");
 sw->WriteLine("Open wide to all of it and");
 sw->WriteLine("Welcome back your power");
 sw->WriteLine();

 sw->WriteLine("Jambo this and jambo that,");
 sw->WriteLine("Walking with bare feet.");
 sw->WriteLine("No parking allowed when down under,");
 sw->WriteLine("Keep it to the street.");
 sw->WriteLine();

 sw->WriteLine("Dead people rising,");
 sw->WriteLine("Walking with bare feet,");
 sw->WriteLine("No parking allowed when down under,");
 sw->WriteLine("Keep it to the street.");

 // The resulting string might be displayed to the user in a GUI.
 MessageBox::Show(sw->ToString(), "Poetry", MessageBoxButtons::OK);
}

System::String and Other I/O Systems
Still prefer the trusty C runtime function printf? Unless you’re compiling with safe mode (the
/clr:safe compiler option), you can still use the C Runtime (CRT) Library or the iostream library
if that’s what you prefer, although the resulting code will not be verifiably safe from memory
corruption problems. Most CRT functions taking a variable argument list will work with
System::String, as in Listing 5-16. Note that as of Visual C++ 2005, it is recommended that

Hogenson_705-2C05.fm Page 90 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 91

you use the more secure variants of the standard CRT functions. While these are not yet part of
the ANSI standard, they have been proposed as extensions to the standard.

Listing 5-16. Using printf

// cli_printf.cpp

using namespace System;
#include <stdio.h>

int main()
{
 String^ str = "managed string";

 // The string is automatically converted to a
 // char array for printf_s.
 printf_s("%s", str);
}

The output of Listing 5-16 is shown here:

managed string

The conversion for printf_s (and printf) is due to the String class’s ability to be converted
via a variable argument list and not a general conversion to const char *. For example, the
following line:

printf_s(str);

produces an error:

cli_printf.cpp(12) : error C2664: 'printf_s' : cannot convert parameter 1 from '
System::String ^' to 'const char *'
 No user-defined-conversion operator available, or
 Cannot convert a managed type to an unmanaged type

Using cout with System::String is a bit more complicated. The string must be marshaled
as a native data type that the overloaded shift operator (<<) supports, and because we are
getting a native pointer to managed data (which could be moved by the garbage collector) it
must be artificially fixed in memory during the time that the native data type is active. We
accomplish this by declaring a pinning pointer (pin_ptr), as shown in Listing 5-17. The first
step is to use PtrToStringChars (defined in vcclr.h) to get a pointer into the underlying wide
character array that represents the string, and assign that to a pinning pointer that fixes the
data it points to as long as the pinning pointer is in scope. This pinning pointer must in turn
be converted to a type that the shift operator supports, so we use static_cast to convert it to
const wchar_t* and pass that to the expression involving wcout, the wide character version
of cout.

Hogenson_705-2C05.fm Page 91 Friday, October 13, 2006 2:39 PM

92 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Listing 5-17. Using a Pinning Pointer

// string_wcout.cpp
#include <vcclr.h>
#include <iostream>

using namespace std;
using namespace System;

int main()
{
 String^ s = "Testing String conversion to iostream.";

 pin_ptr<const wchar_t> ptr = PtrToStringChars(s);
 wcout << static_cast<const wchar_t*>(ptr) << endl;
}

The output of Listing 5-17 is as follows:

Testing String conversion to iostream.

Listing 5-17 is just a taste of the concerns you have to deal with in mixing native and managed
libraries. Using CLR types with classic C++ libraries is an example of C++ interop, which is
discussed in greater detail in Chapter 12.

The preceding sections looked in detail at the String type, including its methods, support
for the + operator, and the Format method in detail, including specific formatting rules for
numeric output. You also saw the StringBuilder class for manipulating strings in-place, and
the Console class for input and output to the console or command-line window, including a
discussion of the In, Out, and Error representations of stdin, stdout, and stderr. I covered
the Write and WriteLine methods, the Read and Readline methods, and file I/O using the
StreamWriter and StreamReader classes, and corresponding functionality for string I/O in the
StringWriter and StringReader classes. Now let’s look at another fundamental type: the array.

Arrays
The C++/CLI managed array provides the functionality of a classic array and is also an object
type complete with methods. The methods simplify common tasks such as getting the length
of the array, sorting, and handling thread synchronization.

A managed array is declared as follows:

array< type, rank >^ array_name;

This is read as “array_name is a handle to a managed array of some type and number of
dimensions (rank).” Here are some examples of declarations of managed arrays:

Hogenson_705-2C05.fm Page 92 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 93

array<int>^ array_of_ints; // a 1D array of int
array<double, 2>^ array_2D_of_doubles; // a 2D array of doubles
array<String^>^ array_of_string_handles; // a 1D array of strings

The preceding declarations produce a null handle, that is, one that doesn’t point to
anything. We create an array with both a long and a short form, as follows:

array_name = gcnew array< type >(length);

array_name = gcnew array< type, rank>(length1, length2, ...);

The rank is the number of dimensions of the array (not the number of elements); it is
optional for a one-dimensional array.

Here are some examples of managed arrays:

array<int>^ array_of_ints; // a 1D array of int
array<double, 2>^ array_2D_of_doubles; // a 2D array of doubles

// Declare and create a new 1D array of int with 100 elements.
array<int>^ array_of_ints = gcnew array<int>(100);

// Declare and create a 1D array of references to Strings with 4 elements.
array<String^>^ array_of_strings = gcnew array<String>(4);

Also, the array type is always used with the handle symbol (^). This serves as a reminder
that the array references an object on the heap. However, these handles cannot be dereferenced
like a pointer to get at an object. The address of the array is the address of the handle; it is not
the same as the address of the first element of the array.

Element access for managed arrays is done using square brackets, although for arrays of
more than one dimension, commas are used as shown here:

element2_2 = native_2D_array[2][2]; // native 2D array
element2_2 = managed_2D_ array[2, 2]; // managed 2D array

Indices are zero-based in both native and managed arrays; that is, the first index is 0 and
the last is N – 1 where N is the length of the array.

Initializing
Native and managed arrays may be initialized when they are created using array initialization
syntax. An array initializer consists of a list of values separated by commas. Unlike the initial-
izer for native arrays, the equal sign is not used in the managed array initializer. If the array is
multidimensional, curly braces are nested. Listing 5-18 illustrates various initializers, showing
the native and managed equivalents side by side.

Hogenson_705-2C05.fm Page 93 Friday, October 13, 2006 2:39 PM

94 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Listing 5-18. Initializing Arrays

// arrays_initializing.cpp
int main()
{

 // Declare, create, and initialize a 1D native array.
 int native_array[2] = { 10, 20 };

 // Declare, create, and initialize a 1D managed array.
 array<int>^ managed_array = gcnew array<int>(2) { 10, 20 };

 // Declare, create, and initialize a 2D native array.
 int native_array_2D[2][2] = { { 1, 0 }, { 0, 1 } };

 // Declare, create, and initialize a 2D managed array.
 array<int, 2>^ managed_array_2D = gcnew array<int, 2>(2, 2)
 { { 1, 0 }, { 0, 1 } };

}

If an initializer is present, the size of the dimensions may be omitted. In this case, the
number of elements in the initializer determines the size of the array. You can also use an
initializer by itself on the right side of an assignment operator, without gcnew, to create a new
array. You can use variables in an initializer, as for array_int3 in Listing 5-19.

Listing 5-19. Initializing an Array Without gcnew

// arrays_initializing2.cpp
int main()
{
 // initialization without gcnew

 array<int>^ array_int1 = { 0, 1, 2 };

 // Initialization with gcnew (no equal sign is used).
 // Here, the size is omitted and determined by the three
 // elements in the initializer list.
 array<int>^ array_int2 = gcnew array<int> { 0, 1, 2 };

 // You can use variables in the initializer list.

 int i = 1, j = 2, k = 3;
 array<int>^ array_int3 = { i, j, k };
}

As in the C++ new expression, the default constructor (the constructor with no arguments)
is called to initialize the elements of the array. You can use gcnew in the array initializer to call a
specific constructor, as in Listing 5-20.

Hogenson_705-2C05.fm Page 94 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 95

Listing 5-20. Initializing Array Elements with Constructors

// arrays_nondefault_ctor.cpp
using namespace System;

ref class C
{

 public:
 C(int i) { Value = i; }

 property int Value;
};

int main()
{
 array<C^>^ array_C = { gcnew C(0), gcnew C(1), gcnew C(2)};

 Console::WriteLine(" {0}, {1}, {2} ", array_C[0]->Value,
 array_C[1]->Value, array_C[2]->Value);
}

The output of Listing 5-20 is as follows:

 0, 1, 2

Array Length
An array is a CLI object and has some self-knowledge that can be accessed using its properties
and methods. For example, you can use the Length property to get the length of an array, as in
Listing 5-21.

Listing 5-21. Getting the Length of an Array

// arrays_length.cpp
using namespace System;

int main()
{
 array<String^>^ string_array =
 gcnew array<String^>(2) { "first", "second" } ;

 for (int i = 0; i < string_array->Length; i++)
 {
 Console::WriteLine(string_array[i]);
 }
}

Hogenson_705-2C05.fm Page 95 Friday, October 13, 2006 2:39 PM

96 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Here is the output of Listing 5-21:

first
second

If you use a size greater than the number of elements provided, the uninitialized elements
are included in the length, as in Listing 5-22.

Listing 5-22. Initializing Only Part of an Array

// arrays_uninitialized_elements.cpp
using namespace System;

int main()
{
 array<String^>^ stringArray = gcnew array<String^>(5)
 { "one", "two" };

 for (int i = 0; i < stringArray->Length; i++)
 {
 Console::WriteLine(stringArray[i]);
 }

 Console::WriteLine("End.");
}

The uninitialized elements are null String handles, which are rendered as extra blank lines:

one
two

End.

Listing 5-23 shows the syntax for creation and element access of a managed one-dimensional
array alongside the classic C++ equivalent.

Listing 5-23. Creating One-Dimensional Arrays

// arrays_managed_native_comparison.cpp
#include <iostream>
using namespace std;

Hogenson_705-2C05.fm Page 96 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 97

int main()
{
 // native 1D array
 int native_array_1D[10];

 // managed 1D array
 array<int>^ managed_array_1D = gcnew array<int>(10);

 for (int i = 0; i < 10; i++)
 {
 native_array_1D[i] = i*i;
 cout << native_array_1D[i] << " ";
 managed_array_1D[i] = native_array_1D[i];
 cout << managed_array_1D[i] << " ";
 }

 cout << endl;
}

Here is the output of Listing 5-23:

0 0 1 1 4 4 9 9 16 16 25 25 36 36 49 49 64 64 81 81

Navigating Arrays
Another feature of native arrays is that, to some extent, arrays and pointers are interchangeable.
The name of a native array is the starting address of the array. The square bracket array-index
syntax is always equivalent to a pointer-offset syntax. That is, the following are equivalent for a
native array:

native_array[i]
*(native_array + i)

Although this is not possible with managed arrays, you can navigate through an array
using iterators, and you can also use interior pointers to navigate an array. Iterators are special
classes that point to elements of arrays or another collection and can be incremented to step
through a collection. You could think of them as smart pointers. Listing 5-24 shows how to walk
through an array using iterators.

Listing 5-24. Using Iterators to Traverse an Array

// arrays_iterators.cpp
using namespace System;
using namespace System::Collections;

Hogenson_705-2C05.fm Page 97 Friday, October 13, 2006 2:39 PM

98 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

int main()
{
 array<DateTime^>^ dateArray = gcnew array<DateTime^>(2);

 dateArray[0] = gcnew DateTime(1970, 12, 18);
 dateArray[1] = gcnew DateTime(1990, 1, 5);

 IEnumerator^ enumerator1 = dateArray->GetEnumerator();
 while (enumerator1->MoveNext())
 {
 DateTime^ current = (DateTime^) enumerator1->Current;
 Console::WriteLine(current->ToString("MM/dd/yyyy"));
 }

}

The output of Listing 5-24 is shown here:

12/18/1970
01/05/1990

The for each statement may be used to iterate through an array, as Listing 5-25 shows.

Listing 5-25. Using for each to Traverse an Array

// arrays_foreach.cpp
using namespace System;

int main()
{
 array<String^>^ stringArray = gcnew array<String^>
 { "one", "two", "three", "four", "five" };

 for each (String^ str in stringArray)
 {
 Console::WriteLine(str);
 }
}

The output of Listing 5-25 is as follows:

one
two
three
four
five

Hogenson_705-2C05.fm Page 98 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 99

Interior pointers are another way of navigating an array that allows you to use pointer
arithmetic. The interior pointer is a pointer to some part of a managed object, in this case an
array. Interior pointers get updated, just as handles do, when the objects they point to get
moved around by the garbage collection process. Chapter 12 will discuss them in more detail.
Listing 5-26 is a preliminary example of using an interior pointer to navigate a managed array.

Listing 5-26. Using an Interior Pointer to Traverse an Array

// arrays_interior_ptr.cpp
using namespace System;

ref class Buf
{
 // ...
};

int main()
{
 array<Buf^>^ array_of_buf = gcnew array<Buf^>(10);

 // Create a Buf object for each array position.
 for each (Buf^ bref in array_of_buf)
 {
 bref = gcnew Buf();
 }

 // Create an interior pointer to elements of the array.
 interior_ptr<Buf^> ptr_buf;

 // Loop over the array with the interior pointer.
 // using pointer arithmetic on the interior pointer
 for (ptr_buf = &array_of_buf[0]; ptr_buf <= &array_of_buf[9]; ptr_buf++)
 {
 // Dereference the interior pointer with *.
 Buf^ buf = *ptr_buf;
 // use the Buf class
 }
}

What happens when you run off the end of the array? If you attempt to access an index that
doesn’t exist in the array, an IndexOutOfRangeException will be thrown, as shown in Listing 5-27.

Hogenson_705-2C05.fm Page 99 Friday, October 13, 2006 2:39 PM

100 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Listing 5-27. Going Past the End of an Array

// array_exception.cpp
using namespace System;

int main()
{
 int i;
 array<int>^ array1 = { 0, 1, 2};

 try
 {
 i = array1[3];
 }
 catch(IndexOutOfRangeException^ e)
 {
 Console::WriteLine("{0}, {1}" , e->ToString(), e->Message);
 }
}

The output of Listing 5-27 is as follows:

System.IndexOutOfRangeException: Index was outside the bounds of the array.
 at main(), Index was outside the bounds of the array.

Differences Between Native and Managed Arrays
If you’re familiar with arrays in classic C++, you know that a native 2D array is an array of
arrays. This is not the case for managed arrays.

The size of a managed array is not part of its type; only its rank is. For classic C++ arrays,
every dimension except the last is part of its type. This makes it a bit easier to define functions
that take managed arrays of unknown sizes, but a known number of dimensions.

There are some important differences in the way in which native and managed arrays
behave at runtime. Managed arrays are created on the managed heap, and as such have a life-
time just like other objects. A native array declared as a local variable is created on the stack,
and so is destroyed at the end of the block. Native arrays created with new are created on the
native heap.

There are some restrictions on native types that can be used in managed arrays. You can
create a managed array of managed types (either reference or value types, or any of the primitive
types) or native pointers. You cannot create a managed array with native aggregate types such
as native arrays, classes, and structures. Table 5-1 outlines differences between native arrays
and managed arrays.

Hogenson_705-2C05.fm Page 100 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 101

Arrays As Parameters
Using arrays as parameters and return values requires special care in C++, because the type of the
array includes the length of the last dimension, but not any others, as you can see by considering
that the code in Listing 5-28 is legal in C++. An array with a dimension unequal to that specified
in the function signature is accepted by the function g, and in fact the size of dimensions other
than the last do not even need to be specified in the function signature, as in the signature for f.

Listing 5-28. Passing an Array of Inconsistent Size

// array_dimension_type.cpp

void f(int a[][2]) { }

void g(int a[5][2]) { }

int main()
{
 int native_2d_array[5][2];
 int native_2d_array2[15][2];

 f(native_2d_array);
 f(native_2d_array2);
 g(native_2d_array);
 g(native_2d_array2);
}

For managed arrays, the rank (number of dimensions) is part of the type, but not the
length of the dimensions.

Table 5-1. Differences Between Native and Managed Arrays

Difference Native Array Managed Array

Underlying representation? A native array is a pointer to a
block of memory.

A managed array is an object
with properties and methods.

What’s in the type? Rank, and size of each
dimension except the last.

Rank, not size.

Stack or heap? Arrays are created on the stack. Arrays are created on the
managed heap.

Allowed element types? Native types. Managed types, primitive
types, or native pointers.

Hogenson_705-2C05.fm Page 101 Friday, October 13, 2006 2:39 PM

102 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Arrays are passed by reference, not by value. Managed arrays are passed by reference, like
any reference type, so this behavior is the same. Listing 5-29 shows how to use a managed array
as a function parameter.

Listing 5-29. Using an Array As a Parameter

// arrays_parameter.cpp
using namespace System;

// using an array as an argument

void set_to_one(int i, array<int>^ array_arg)
{
 // Change the array inside this function.
 array_arg[i] = 1;
}

int main()
{
 array<int>^ array1 = { 0, 1 };
 set_to_one(0, array1);

 // The output here is " 1 1", indicating that the array
 // change is made to the same array.
 Console::WriteLine(" {0} {1}", array1[0], array1[1]);

}

Arrays may be used as return values just as any reference type.

Copying an Array
If you use the assignment operator with arrays, you’ll create another reference to the same
array. In other words, the assignment operator is a shallow copy, just as you saw with String. If
you want a deep copy, you need to use the static Array::Copy method. Listing 5-30 shows how.

Listing 5-30. Making Copies of an Array

// arrays_copy.cpp
using namespace System;

int main()
{
 array<int>^ array1 = { 0, 1, 2};

Hogenson_705-2C05.fm Page 102 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 103

 // Shallow copy creates another name for the array.
 array<int>^ array2 = array1;

 array2[0] = 100;

 // This prints "100" since array2 is a synonym of array1.
 Console::WriteLine("{0}", array1[0]);

 array<int>^ array3 = gcnew array<int>(3);
 Array::Copy(array1, array3, array1->Length);

 // Change a value in the new copy of the array.
 array3[0] = 200;

 // This prints "100 1 2" since the old array was not affected.
 Console::WriteLine("{0} {1} {2}", array1[0], array1[1], array1[2]);
}

Here is the output of Listing 5-30:

100
100 1 2

Managed Array Class Members
A managed array is actually an instance of the class System::Array. System::Array inherits
from System::Object and implements IList. All managed arrays have the members shown in
Tables 5-2 and 5-3.

Table 5-2. Some Public System::Array Properties

Property Description

Length Returns the number of elements in all the dimensions of the array

LongLength Returns lengths greater than the maximum 32-bit integer, 231 – 1

Rank Returns the number of dimensions in the array

SyncRoot Returns an object which can be used for thread synchronization

Hogenson_705-2C05.fm Page 103 Friday, October 13, 2006 2:39 PM

104 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Table 5-3. Some Public System::Array Methods

Name of Method Type of Method Description

AsReadOnly generic, static Returns a read-only IList generic wrapper
class, ReadOnlyCollection<T>, for the array.

BinarySearch
(various overloads)

static Locates an element in a sorted 1D array.

Clear static Sets elements of an array to 0, NULL, or false,
depending on the element type.

Clone Creates a shallow copy of the array.

ConstrainedCopy static Copies a range of elements in an array, and
undoes changes if the copy fails.

generic ConvertAll generic, static Returns a new array with every element
converted to a new type.

Copy static Creates a deep copy of the array.

CopyTo Copies elements from one 1D array to another
1D array or another position in the array.

CreateInstance static Creates an array with specified rank and size.

Equals Tests for equality (inherited from Object).
Tests reference equality, not whether elements
are equal.

generic Exists generic, static Returns true if an array contains an element
that meets the specified criteria.

generic Find generic, static Returns the first element in an array that
matches the specified criteria.

generic FindAll generic, static Returns all the elements in an array that match
the specified criteria.

generic FindIndex generic, static Like Find, but returns the index of the element,
not the element itself.

generic FindLast generic, static Like Find, but returns the last element
matching the criteria.

generic FindLastIndex generic, static Like FindLast, but returns the index, not
the element.

generic ForEach generic, static Executes a specified action on each element of
an array.

GetEnumerator Returns an enumerator for iterating over
the array.

GetHashCode Returns hash code. Inherited from Object.

GetLength Returns the length of the specified dimension
of the array.

GetLongLength Like GetLength, but supports lengths up
to 263 – 1.

Hogenson_705-2C05.fm Page 104 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 105

The methods implemented by the System::Array class implement the most common array
operations. For example, you can sort an array by calling its Sort method. This is possible for
any fundamental type or any element type that defines IComparable. Once an array is sorted,
you can use some of the search functions, such as BinarySearch. Listing 5-31 shows the use of
the Array methods to sort and search.

Listing 5-31. Sorting and Searching Arrays

// arrays_sort_search.cpp
using namespace System;

int main()
{
 array<int>^ array1 = gcnew array<int>(10)
 { 122, 87, 99, 6, 45, 12, 987, 115, 0, 10 };

GetLowerBound Returns the starting index if the array starts at
an index other than zero.

GetType Gets a Type object for this type (inherited
from Object).

GetUpperBound Gets the last index of the array.

GetValue Gets the value of an element.

IndexOf static Gets the index of the first occurrence of
an element in a 1D array, starting from a
specified index.

Initialize For value type arrays, initializes the array by
calling the default constructor of that value
type.

LastIndexOf static Like IndexOf, but searches from the end of the
array or specified index.

generic Resize generic, static Changes the size of the array.

Reverse static Reverses the order of a 1D array (or portion of
the array).

SetValue Sets an element to the specified value.

Sort static Sorts a 1D array.

ToString Returns a String representing the type.
Inherited from Object.

TrueForAll generic, static Determines whether a condition is true for all
elements in an array.

Table 5-3. Some Public System::Array Methods

Name of Method Type of Method Description

Hogenson_705-2C05.fm Page 105 Friday, October 13, 2006 2:39 PM

106 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

 Array::Sort(array1);

 for each (int i in array1)
 {
 // Output is sorted.
 Console::Write("{0} ", i);
 }

 Console::WriteLine();

 // Search for one of the values
 int index = Array::BinarySearch(array1, 115);

 if (index >= 0)
 Console::WriteLine("Found {0} at position {1}.", array1[index], index);
 else
 Console::WriteLine(" Not Found. ");
}

The output of Listing 5-31 is as follows:

0 6 10 12 45 87 99 115 122 987
Found 115 at position 7.

Array Equality
The Equals method or the == operator tests for reference equality only. Listing 5-32 is an example
of two arrays being tested for element equality by various methods, element by element.

Listing 5-32. Testing Array Equality

// array_equality_test.cpp
using namespace System;

// This function tests the equality of two 1D
// arrays of int.
bool ReallyEquals(array<int>^ a, array<int>^ b)
{
 if (a->Length != b->Length)
 return false;

 // Element-by-element comparison
 for (int i = 0; i < a->Length; i++)
 {
 if (a[i] != b[i]) return false;
 }

Hogenson_705-2C05.fm Page 106 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 107

 return true;
}

int main()
{
 array<int>^ ai1 = gcnew array<int> { 1, 2 };
 array<int>^ ai2 = gcnew array<int> { 1, 2 };

 // Are these arrays equal?
 if (ai1 == ai2)
 {
 Console::WriteLine("The arrays are equal using the == operator.");
 }
 if (ai1->Equals(ai2))
 {
 Console::WriteLine("The arrays are equal using the Equals method.");
 }
 if (ReallyEquals(ai1, ai2))
 {
 Console::WriteLine(
 "The arrays are equal using element-by-element comparison.");
 }
 }

Here is the output of Listing 5-32:

The arrays are equal using element-by-element comparison.

Parameter Arrays
Variable argument lists are necessary whenever a function needs to handle an unknown number of
optional parameters, such as an I/O function that will be passed an unknown number of variables.
An array is used for these parameters, and a special syntax is used for such functions, as in
Listing 5-33.

Listing 5-33. Using Parameter Arrays

// param_array.cpp
using namespace System;

// Total takes at least one int and a variable
// number of subsequent integers that are wrapped
// into a managed array.

Hogenson_705-2C05.fm Page 107 Friday, October 13, 2006 2:39 PM

108 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

int Total(int a, ... array<int>^ varargs)
{
 int tot = a;
 for each (int i in varargs)
 {
 tot += i;
 }
 return tot;
}

int main()
{
 int sum1 = Total(100, 200, 350);
 Console::WriteLine("First total: {0}", sum1);

 int sum2 = Total(1, 2, 3, 4, 5, 6, 7, 8);
 Console::WriteLine("Second total: {0}", sum2);
}

The output of Listing 5-33 is shown here:

First total: 650
Second total: 36

Arrays in Classes
Arrays are often used as private data inside a class. Usually you will want to control access to
your internal array to make sure the data it contains retains integrity. It’s a bad idea to return
an internal instance of an array. If you do, you lose control over the data in your array.

You may also want to create a class that can be used as an array. In classic C++ you could
define the indirection operator (operator[]). In C++/CLI, you can still do that, and you can also
use what’s called a default indexed property, which you’ll learn more about in Chapter 7.

Beyond Arrays: ArrayList
There are times when a fixed-size array will not meet your needs. Similarly, there are times
when you need a data structure that you can insert items into or delete items from. Inserting
and deleting items in the middle of an array is not possible without moving all the subsequent
elements. For efficient deletion and insertion, use an ArrayList (see Listing 5-34). An ArrayList
is like an array that supports list-like functionality. An ArrayList can grow to an undetermined
length as needed.

Hogenson_705-2C05.fm Page 108 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 109

Listing 5-34. Using an ArrayList

// arraylist.cpp
using namespace System;
using namespace System::Collections;

int main()
{
 ArrayList^ array_list = gcnew ArrayList();

 array_list->Add("apple");
 array_list->Add("banana");

 // Iterate using the for each operator.
 for each (String^ s in array_list)
 {
 Console::WriteLine(s);
 }

 // Iterate using indexing.

 for (int i = 0; i < array_list->Count; i++)
 {
 Console::WriteLine("{0} {1}", i, array_list[i]);
 }
}

The output of Listing 5-34 is as follows:

apple
banana
0 apple
1 banana

The problem with the ArrayList class is that it represents an untyped collection. Unlike an
array, which forces its elements to be of the specified type, the ArrayList used in the previous
example has no such enforcement. Fortunately, there is a solution in the form of the generic
ArrayList class. As you saw briefly in Chapter 2, it is possible in C++/CLI to use a generic class
that contains an unknown type parameter. In the .NET Framework generic List class, in the
namespace System::Collections::Generic, the element type is the generic type parameter.
Using this generic List class, you can have a strongly typed version of the ArrayList (see
Listing 5-35). For more information on generics, see Chapter 11.

Hogenson_705-2C05.fm Page 109 Friday, October 13, 2006 2:39 PM

110 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Listing 5-35. Using a Generic List

// list_generic.cpp
using namespace System;
using namespace System::Collections::Generic;

int main()
{
 List<String^>^ list = gcnew List<String^>();

 list->Add("apple");
 list->Add("banana");

 // Iterate using the for each operator.
 for each (String^ s in list)
 {
 Console::WriteLine(s);
 }

 // Iterate using indexing.

 for (int i = 0; i < list->Count; i++)
 {
 Console::WriteLine("{0} {1}", i, list[i]);
 }
}

The output of Listing 5-35 is also

apple
banana
0 apple
1 banana

The preceding sections reviewed the classic C++ array and compared that construct to
the new C++/CLI array construct. You saw the syntax for creating and initializing arrays, and
learned about copying arrays, using arrays as parameters and return values, and the usefulness
of some of the functionality that C++/CLI arrays inherit from System::Array, including sorting
and searching.

Next, you’ll get a look at another fundamental .NET type used in C++/CLI—the Enum type
(represented by System::Enum).

Enumerated Types
C++/CLI supports an enumerated type. Of course, classic C++ also supports enumerated types.
There are some interesting differences between the managed enum class type and C++ enums.

Hogenson_705-2C05.fm Page 110 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 111

In classic C++, an enum is an integer type. In C++/CLI, the enum class is also treated as an inte-
gral type but, rather like int can be boxed into an object type, and array types inherit implicitly
System::Array, enum objects inherit implicitly from System::Enum, and methods available on
System::Enum may be called. This inheritance relationship doesn’t preclude them from being
treated as integers for efficiency, however, since, like any other value type, they are only boxed
into the relevant object type when needed, for example, to call a method.

The Enum Class
Enumerated types are supported in C++/CLI using the enum class (or enum structure). Enum
classes have a series of static named fields that have a fixed integral value. There is no operative
difference between an enum structure and class.

You saw in Chapter 2 that the enum class is used to define an enumerated type. Enumerated
types are value types. The enum variable may be a handle, in which case it’s a boxed value type,
or it may be created on the stack. It could also be a member of a class and be part of the layout
of the enclosing class. The example in Listing 5-36 shows the basic syntax for declaring and
using an enum class.

Listing 5-36. Using an Enum

// enum.cpp

enum class Flavor
{
 Vanilla,
 Chocolate,
 Strawberry
};

int main()
{
 // The enum variable may be a handle
 // or a stack variable. If used as a handle,
 // it's a boxed value type.

 // The enum value, Vanilla, is
 // scoped by the enum class name.
 Flavor^ flavor_handle = Flavor::Vanilla;
 Flavor flavor_stack = Flavor::Vanilla;
}

Note the differences between the usage of enum class values and classic C++ enum values.
Enum class values are scoped with the name of the enum class; classic C++ enum values are
not scoped with the name of the enum.

Hogenson_705-2C05.fm Page 111 Friday, October 13, 2006 2:39 PM

112 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

Enumerated Types and Conversions
Another difference between C++/CLI enum class types and classic C++ enums is in how they
are handled in conversions. The classic C++ enum is readily converted to an int. In fact, it is an
int in disguise. This can be very useful, and many programming idioms use this conversion
liberally. The C++/CLI enum is also an integral type in disguise, but by contrast, enum class
objects must be converted to integer types explicitly.

// Try to convert an enum class value to int.
 int i = Flavor::Vanilla; // Error!

The conversion must be made explicit with a cast, like so:

int i = (int) Flavor::Vanilla;

Stylistically, a safe_cast is preferred:

int i = safe_cast<int>(Flavor::Vanilla);

The Underlying Type of an Enum
The enum class has an underlying integral type. C++/CLI provides a way to specify this under-
lying type. The syntax is rather like the syntax for inheritance, in that the underlying type is
used after a colon, rather like specifying a base type (see Listing 5-37).

Listing 5-37. Specifying the Underlying Type of an Enum

// enum_type_specified.cpp
using namespace System;

enum class Ordinal : char
{
 zero, one, two, three, four, five, six, seven, eight, nine, ten,
 eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen,
 eighteen, nineteen, twenty
};

int main()
{
 char c1 = 13;
 char c2 = 156;
 Ordinal ord1 = safe_cast<Ordinal>(c1);
 Console::WriteLine(ord1.ToString());
}

Here is the output of Listing 5-37:

thirteen

Hogenson_705-2C05.fm Page 112 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 113

The Flags Attribute
A typical use of enums is to define a set of independent binary values, known as flags, that can
be combined by using the bitwise OR operator (|). The Flags attribute is intended to be used
on enum classes that can be treated as a series of flags, as in Listing 5-38.

Listing 5-38. Using the Flags Attribute

// enum_flags.cpp
using namespace System;

[Flags]
enum class FontFormat
{
 None = 0, // No flags set.
 BOLD = 1, // The values are set to powers of 2
 ITALIC = 2, // so that in binary, each represents one bit position.
 UNDERLINE = 4,
 STRIKETHROUGH = 8,
 RED = 16,
 FLASHING = 32,
 BOLD_ITALIC = BOLD | ITALIC // combination of two values
};

ref class Font
{
 public:

 property String^ Name;

 Font(String^ s) { Name = s; }
};

ref class Display
{
 public:

 static void SetFont(Font^ font, FontFormat format)
 {
 // Testing the bits of a Flags enum using the bitwise and operator (&)
 // requires a cast to int.
 if (safe_cast<int>(format) & safe_cast<int>(FontFormat::BOLD))
 {
 // Use a bold font.
 }

Hogenson_705-2C05.fm Page 113 Friday, October 13, 2006 2:39 PM

114 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

 if (safe_cast<int>(format) & safe_cast<int>(FontFormat::ITALIC))
 {
 // Use italics.
 }
 // etc.
 };

};

int main()
{
 // The bitwise or operator (|) combines the flag values.
 Display::SetFont(gcnew Font("Times New Roman"),
 FontFormat::BOLD | FontFormat::RED);

 Display::SetFont(gcnew Font("Helvetica"),
 FontFormat::ITALIC | FontFormat::FLASHING);
}

Enum Values As Strings
The enumeration value can be obtained easily as a string. An enumeration value may be passed
to any of the string formatting functions, such as the Format method in the String class, or a
Write or WriteLine method. The format character used after the colon determines whether it is
displayed as a name, decimal number, or hex number. Possible format characters include D or
d, G or g, F or f, X or x. The G or g format indicates “general,” and causes the formatting to resolve
to the name of the enumeration value. If the FlagsAttribute is used on the enumeration, the
formatted value is a delimiter-separated list of flag names. The F or f format is similar except
that the enumeration is interpreted as a flag regardless of whether the FlagsAttribute was used
on the enum declaration. The other formatting characters specify numeric output in decimal
(D or d) or hexadecimal (X or x). For all these formats, the case of the formatting character is
ignored. You can also use the ToString method on the enumeration object. The ToString method
takes the same formatting string as a parameter. Listing 5-39 provides some examples.

Listing 5-39. Formatting Enum Values

// enum_format.cpp
using namespace System;

enum class Color
{
 Red = 1,
 Blue = 2,
 Green = 3
};

Hogenson_705-2C05.fm Page 114 Friday, October 13, 2006 2:39 PM

C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S 115

int main()
{
 Console::WriteLine("Colors: {0}, {1}, {2}", Color::Red, Color::Blue,
 Color::Green);
 Console::WriteLine("Colors: {0:d}, {1:d}, {2:d}", Color::Red, Color::Blue,
 Color::Green);

 Color c = Color::Red;

 String^ s1 = c.ToString("X"); // Specify the hex representation.
 Console::WriteLine(s1);

 // Use the Format method of the Enum class.
 String^ s2 = Enum::Format(Color::typeid, c , "G");

 Console::WriteLine(s2);
}

The output of Listing 5-39 is shown here:

Colors: Red, Blue, Green
Colors: 1, 2, 3
00000001
Red

This example also illustrates the use of the Format method of the System::Enum class, which
is implicitly inherited by every enumeration in C++. The first argument of the Format method is
the Type object for the desired enumeration type. The second argument is the enumeration
value, and the third is the format specifier, which is interpreted in the same way as described
for the String::Format family of methods.

For an example of how formats work with an enum with the Flags attribute specified, consider
Listing 5-40, a modified version of Listing 5-39.

Listing 5-40. Enum Formatting with the Flags Attribute

// enum_format2.cpp
using namespace System;

// Use the FlagsAttribute.
[Flags]
enum class Color
{
 Red = 1,
 Blue = 2,
 Green = 4 // Use powers of 2.
};

Hogenson_705-2C05.fm Page 115 Friday, October 13, 2006 2:39 PM

116 C H A P T E R 5 ■ F U N D A M E N T A L T Y P E S : S T R I N G S , A R R A Y S , A N D E N U M S

int main()
{
 Console::WriteLine("Colors: {0}, {1}, {2}", Color::Red, Color::Blue,
 Color::Green);
 Console::WriteLine("Colors: {0:d}, {1:d}, {2:d}", Color::Red, Color::Blue,
 Color::Green);

 // Use the bitwise OR operator to combine flags.
 Color c = Color::Red | Color::Blue;

 String^ s1 = c.ToString("X"); // Specify the hex representation.
 Console::WriteLine(s1);

 // Use the Format method of the Enum class.
 String^ s2 = Enum::Format(Color::typeid, c , "G");

 Console::WriteLine(s2);
}

The output changes to the following:

Colors: Red, Blue, Green
Colors: 1, 2, 4
00000003
Red, Blue

Summary
In this chapter, you looked at the .NET Framework special types that also have language support in
C++/CLI and that are the modern versions of classic C++ types: String for character strings,
.NET arrays, and .NET enumerated types. You also learned about related functionality in the
.NET Framework and C++/CLI language for each of these types, such as stream I/O, the use of
parameter arrays to implement variable argument lists, and the use of enums as flags.

In the next chapter, you’ll study other types, classes, and structs.

Hogenson_705-2C05.fm Page 116 Friday, October 13, 2006 2:39 PM

117

■ ■ ■

C H A P T E R 6

Classes and Structs

Since you already know the basics of how classes (and structs) are handled in C++, this
chapter will focus on the differences between native classes and managed classes. Because the
C++ type system exists intact alongside the managed type system in C++/CLI, you should keep
in mind that the C++ behavior is still true and valid in C++/CLI native types.

Structs are the same as classes except that in a struct, the members are public by default,
and in a class, they are private. Also, inheritance is public by default for structs, but private by
default for classes. To avoid needless repetition, I will just use the term class, and it shall be
understood to refer to both.

At a glance, the major differences are that there is more than one category of class, and that
these categories of classes behave differently in many situations. Chapter 2 has already discussed
this feature. There are reference types and there are value types. Native types would make a
third category.

Another key difference is the inheritance model. The inheritance model supported in C++
is multiple inheritance. In C++/CLI, a restricted form of multiple inheritance is supported for
managed types involving the implementation of multiple interfaces, but not multiple inherit-
ance of classes. Only one class may be specified as the direct base type for any given class, but
(for all practical purposes) an unlimited number of interfaces may be implemented. The philos-
ophy behind this difference is explained more thoroughly in Chapter 9.

C++/CLI classes also benefit from some language support for common design patterns for
properties and events. These will be discussed in detail in Chapter 7.

Due to the nature of the garbage collector, object cleanup is different in C++/CLI. Instead
of just the C++ destructor, C++/CLI classes may have a destructor and/or a finalizer to handle
cleanup. You’ll see how these behave, how destructors behave differently from C++ native
destructors, and when to define destructors and finalizers.

Also in this chapter, you’ll look at managed and native classes and how you can contain a
native class in a managed class and vice versa. You’ll also explore a C++/CLI class that plays a
Scrabble-like game to illustrate classes along with the fundamental types discussed in Chapter 5.

Much of the information in this chapter applies to value classes as well as reference classes.
Value classes do not participate in inheritance, and they have different semantics when copied
(as discussed in Chapter 2) and when destroyed, but otherwise they behave in a similar manner
to reference types. Other than the differences mentioned in this paragraph and in Table 6-1,
you should assume that the information applies equally to both value types and reference types
unless stated otherwise. For reference, the differences between reference types and value types
are shown in Table 6-1.

Hogenson_705-2C06.fm Page 117 Thursday, October 19, 2006 7:59 AM

118 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

Constructors and Initialization
Constructors in managed types work essentially the same way as constructors for native types.
There are a few differences worth mentioning. In the constructor, you normally initialize
members of the class. However, experience has taught programmers some limitations of the
C++ language support for construction and initialization. For example, a lot of initialization
was really class-level initialization, not instance-level initialization. C++/CLI addresses this by
adding support for static constructors, which run once before a class is ever used. They are
never called from code, but they are called by the runtime sometime prior to when the class is
first used.

You’ll also see in this chapter two new types of constant values. The first is a literal field.
Literal fields are very much like static const values in a class. In this chapter, I will explain why
literal fields are preferable to static const values in managed types. The second type of constant is
an initonly field. An initonly field is only considered a constant value after the constructor
finishes executing. This allows you to initialize it in the constructor but enforces the constancy
of the variable in other code.

Value types act as if they have a default constructor, and always have a default value that is
the result of calling the default constructor. In reality, the value type data is simply zeroed out.
There is no actual constructor function body generated for a value type. The default constructor is
created automatically, and in fact, if you try to create one, the compiler will report an error.
Reference types need not implement a default constructor, although if they do not define any

Table 6-1. Differences Between Value Types and Reference Types

Characteristic Reference Type Value Type

Storage location On the managed heap. On the stack or member in a structure
or class.

Assignment
behavior

Handle assignment creates
another reference to the same
object; assignment of object
types copies the full object if a
copy constructor exists.

Copies the object data without using
a constructor.

Inheritance Implicitly from System::Object
or explicitly from exactly one
reference type.

Implicitly from System::ValueType
or System::Enum.

Interfaces May implement arbitrarily
many interfaces.

May implement arbitrarily many
interfaces.

Constructors and
destructors

A default constructor and
destructor are generated, but no
copy constructor (unlike native
types). You can define a default
constructor or constructors
with parameters. You can
define a default destructor.

A default constructor and destructor
are generated, but no copy constructor.
You cannot define your own default
constructor or copy constructor.
You can define constructors with
parameters. You cannot define a
default destructor.

Hogenson_705-2C06.fm Page 118 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 119

constructors, a default constructor is created implicitly, just as in classic C++. This constructor
does not actually do any real work; the CLR automatically zeroes out any managed object upon
creation without an actual constructor call.

Static Constructors
A static constructor or class constructor is a static method in a class that is called prior to when
the class is first accessed. A static constructor handles any class-level initialization.

In classic C++, if you want code to run when a class is first loaded, for example, when an
application starts up, you would probably define a class with a constructor and make that class
a static member of another class. The static initialization for the enclosing class will invoke the
constructor of the member, as in Listing 6-1.

Listing 6-1. Using a Static Initialization

// startup_code.cpp
#include <stdio.h>

class Startup
{
 public:
 Startup()
 {
 // Initialize.
 printf("Initializing module.\n");
 }
};
class N
{
 static Startup startup;

 N()
 {
 // Make use of pre-initialized state.
 }
};

Alternatively, you might have a static counter variable that is initialized to zero, and have
code in the class constructor that checks the counter to see whether this class has ever been
used before. You need to be careful about thread safety in such a function, taking care to ensure
that the counter is only modified by atomic operations or locking the entire function. You could
then choose to run some initialization code only when the first instance is created. C++/CLI
provides language support for this common design pattern in the form of static constructors,
as demonstrated in Listing 6-2.

Hogenson_705-2C06.fm Page 119 Thursday, October 19, 2006 7:59 AM

120 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

Listing 6-2. Using a Static Constructor

// static_constructor.cpp
using namespace System;

ref class C
{
 private:
 static String^ data;

 static C()
 {
 Console::WriteLine("C static constructor called.");
 data = "Initialized";
 }

public:

 C()
 {
 Console::WriteLine("C Constructor called.");
 Console::WriteLine(data);
 }

};

int main()
{
 Console::WriteLine("main method");
 C c1;
 C^ c2 = gcnew C();
}

Here is the output for Listing 6-2:

C static constructor called.
main method
C Constructor called.
Initialized
C Constructor called.
Initialized

The static constructor should be private and cannot take any arguments, since it is called
by the runtime and cannot be called by user code.

You cannot define a static destructor; there is no such animal. This makes sense because
there is no time in a program when a type is no longer available when it would make sense to
call a default destructor.

Hogenson_705-2C06.fm Page 120 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 121

Copy Constructors for Reference and Value Types
Unlike native types, reference types do not automatically get a copy constructor and an assign-
ment operator. They may be created explicitly if required. These functions don’t always make
sense for reference types, which normally don’t represent a value that can be copied or assigned.
Value types can be copied and assigned automatically. They behave as if they have copy
constructors and assignment operators that copy their values.

Literal Fields
In managed classes, const fields are not seen as constant when invoked using the #using directive.
You can initialize constant values that will be seen as constants even when invoked in that way by
declaring them with the literal modifier. The literal field so created has the same visibility
rules as a static field and is a compile-time constant value that cannot be changed. It is
declared as in Listing 6-3.

Listing 6-3. Declaring Literals

ref class Scrabble
{
 // Literals are constants that can be initialized in the class body.
 literal int TILE_COUNT = 100; // the number of tiles altogether
 literal int TILES_IN_HAND = 7; // the number of tiles in each hand

 // ...

};

A literal field is allowed to have an initializer right in the class declaration. The value initial-
ized must be computable at compile time. literal is added as a modifier in the same position
that static would appear, that is, after other modifiers (see Listing 6-4) but before the variable
name; literal is considered a storage class specifier.

Listing 6-4. Initializing a Literal

// literal.cpp
using namespace System;

ref class C
{
 literal String^ name = "Bob";

 public:

Hogenson_705-2C06.fm Page 121 Thursday, October 19, 2006 7:59 AM

122 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 C()
 {
 Console::WriteLine(name);
 }

 void Print()
 {
 Console::WriteLine(name);
 }
};

int main()
{
 C^ c = gcnew C();
 c->Print();
}

You can use literal values (e.g., 100 or 'a'), string literals, compile-time constants, and
previously defined literal fields in the initialization of literal fields. Literal fields are not static;
do not use the keyword static for them. However, because they are not instance data, they
may be accessed through the class like a static field, as in Listing 6-5.

Listing 6-5. Accessing Literals

// literal_public.cpp
using namespace System;

ref class C
{
 public:

 literal String^ name = "Bob";

 C()
 {
 Console::WriteLine(name);
 }

 void Print()
 {
 Console::WriteLine(name);
 }
};

Hogenson_705-2C06.fm Page 122 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 123

int main()
{
 C^ c = gcnew C();
 c->Print();

 // Access through the class:
 Console::WriteLine(C::name);
}

Literal fields are needed because of a limitation in how the compiler is able to interpret
static constant fields that are imported into an application from a compiled assembly with the
#using statement. The compiler is unable to consider static constant fields compile-time
constants. Literal fields are marked in a different way in the assembly and are identifiable as
compile-time constants, so they are allowed wherever a compile-time constant value is needed,
such as in nontype template arguments and in native array sizes. Listing 6-6 shows a simple
class in which both a static constant and a literal member are declared and initialized, and
Listing 6-7 shows how they differ in behavior when used in another assembly.

Listing 6-6. Defining Static Constants and Literals

// static_const_vs_literal.cpp
// compile with: cl /clr /LD static_const_vs_literal.cpp

public ref class R
{
 public:
 static const int i = 15;
 literal int j = 25;
};

Listing 6-7. Compiling Static Constants and Literals

// static_const_main.cpp

#using "static_const_vs_literal.dll"

template<int i>
void f()
{ }

int main()
{
 int a1[R::i]; // Error: static const R::i isn't considered a constant.
 int a2[R::j]; // OK

 f<R::i>(); // Error
 f<R::j>(); // OK
}

Hogenson_705-2C06.fm Page 123 Thursday, October 19, 2006 7:59 AM

124 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

As you can see, the static constant value is not interpreted as a compile-time constant
when referenced in another assembly.

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42
for Microsoft (R) .NET Framework version 2.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

static_const_main.cpp
static_const_main.cpp(13) : error C2057: expected constant expression
static_const_main.cpp(13) : error C2466: cannot allocate an array of constant si
ze 0
static_const_main.cpp(13) : error C2133: 'a1' : unknown size
static_const_main.cpp(16) : error C2975: 'i' : invalid template argument for 'f'
, expected compile-time constant expression
 static_const_main.cpp(5) : see declaration of 'i'

On the other hand, if you include the same code as source rather than reference the built
assembly, static const is interpreted using the standard C++ rules.

initonly Fields
Now suppose we have a constant value that cannot be computed at compile time. Instead of
marking it literal, we use initonly. A field declared initonly can be modified only in the
constructor (or static constructor). This makes it useful in situations where using const would
prevent the initialization code from compiling (see Listing 6-8).

Listing 6-8. Using an initonly Field

// initonly.cpp
using namespace System;

ref class R
{
 initonly String^ name;

 public:

 R(String^ first, String^ last)
 {
 name = first + last;
 }

Hogenson_705-2C06.fm Page 124 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 125

 void Print()
 {
 name = "Bob Jones"; // Error!
 Console::WriteLine(name); // OK
 }
};

int main()
{
 R^ r = gcnew R("Mary", "Colburn");
 r->Print();
}

The compilation output is for Listing 6-8 is as follows:

Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42
for Microsoft (R) .NET Framework version 2.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

initonly.cpp
initonly.cpp(17) : error C3893: 'R::name' : l-value use of initonly data member
is only allowed in an instance constructor of class 'R'

An initializer is allowed if the initonly field is static, as demonstrated in Listing 6-9.

Listing 6-9. Initializing a Static initonly Field

// initonly_static_cpp
using namespace System;

ref class R
{
 public:

 static initonly String^ name = "Ralph"; // OK
 // initonly String^ name = "Bob"; // Error!

 // rest of class declaration
};

The initonly modifier can appear before or after the static modifier.

Hogenson_705-2C06.fm Page 125 Thursday, October 19, 2006 7:59 AM

126 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

Const Correctness
In classic C++, a method can be declared const, which enforces that the method does not affect
the value of any data in the object, for example:

class N
{
 void f() const { /* code which does not modify the object data */}
};

This is an important element of const correctness, a design idiom in which operations that
work on constant objects are consistently marked const, ensuring that programming errors in
which a modification is attempted on a const object can be detected at compile time.

Const correctness is an important part of developing robust C++ code, in which errors are
detected at compile time, not at runtime. Proper const parameter types and return values go a
long way to prevent common programming errors, even without true const correctness in the
classic C++ sense. Even so, many C++ programmers do not use const correctness, either because
the codebase they are working on did not implement it from the ground up, or because the
amount of extra time to design it correctly was too great a price to pay in the results-oriented
corporate world. In that sense, full const correctness is like flossing one’s teeth. For those who
do it, it’s unthinkable not to do it. For those who don’t, it’s just too much hassle, even though
they may know deep down that they should do it.

In general, const correctness works well only if all parts of a library implement it consistently.
Anyone who’s ever tried to retrofit an existing library with const correctness knows this, since
anytime you add const in one location, it often requires const to be added in several other loca-
tions. Like it or not, the CLI is not designed from the ground up to enable full const correctness
in the classic C++ sense. Other CLI languages do not support full C++-style const correctness.
Since the .NET Framework isn’t implemented with C++ const correctness in mind, attempting
to support full C++ const correctness in C++/CLI would be an exercise in futility and force
programmers to use const_cast to cast away const when using .NET Framework functionality.
Hence, C++/CLI does not support const methods on managed types. At one point early in the
development of the C++/CLI language, this support was included, but the results were ugly and
nearly unusable, so the effort was dropped. While this knocks out one of the pillars of const
correctness, C++/CLI does support const parameter types and return values, and, although
they are not alone enough to enforce const correctness, they at least enable many common
const correctness errors to be detected at compile time.

Hogenson_705-2C06.fm Page 126 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 127

Properties, Events, and Operators
Properties represent the “has-a” relationship for a member of a class. They behave as and are
used like public fields of a class, except that they have a public interface that is separate from
the private implementation, thus enabling data encapsulation. Events encapsulate behavior of
a class in response to some stimulus or triggering condition; operators are a classic C++ feature
that is extended in C++/CLI. Properties, events, and operators are covered in the next chapter.

Example: A Scrabble Game
Let’s look at an extended example combining all the language features covered in detail so far:
a simple Scrabble game with Console output (see Listing 6-10). Scrabble is one of my favorite
games. I used to play with my family as a kid (back when, for some unknown reason, we thought
playing “antitelephonebooth” would be a cool idea). I played so much I thought I was a hotshot
Scrabble player, that is, until I subscribed to the Scrabble Players Newsletter and found out that
I was definitely still at the amateur level. I discovered that there are people who know the Official
Scrabble Player’s Dictionary from front to back by heart and play obscure combinations of
letters that only the initiated know are real words. They may not know what they mean, but
they sure know their potential for scoring points. Anyway, the game is interesting to us because
it involves several arrays, and copious use of string, so, in addition to demonstrating a functioning
class, it will provide a review of the last few chapters. We will implement the full game, but
implementing the dictionary and the computer player AI are left as exercises for you to try on
your own. Also, we will implement this as a console-based game, and players are asked to enter
the location of their plays using the hex coordinates. Yes, I know it’s geeky. You could also write
an interface for this using Windows Forms, another exercise left for you to try as you like.

There are a few things to notice about the implementation. The Scrabble game is one class,
and we define some helper classes: Player and Tile. Player and Tile are both reference classes
as well. You might think that Tile could be a value class. In fact, it’s better as a reference class
because in the two-dimensional array of played tiles, the unplayed tiles will be null handles.
If we were to create a 2D array of value types, there would be no natural null value for an
unoccupied space.

The basic memory scheme is illustrated in Figure 6-1. We use both lists and arrays. We use
arrays for the gameboard, since it never changes size. The bag of tiles and the players’ racks of
tiles are implemented as lists since they may fluctuate in size. You’ll see that we copy the list
and the arrays into a temporary variable that we use as the play is being formulated. Once the
play is final, the changed version is copied back into the original list or array. The former is a
deep copy since we’re creating a version we can modify. The latter is a shallow copy. The refer-
ence is changed to point to the modified object. It’s useful to examine this code—see the treatment
of the variable workingTiles and workingBoard in the PlayerMove function. Another thing to notice
about the arrays is that the array of tiles on the board is an array of handles. You’ll see that it
starts off as an array of null handles, and as tiles are played, the handles are set to actual objects.

Hogenson_705-2C06.fm Page 127 Thursday, October 19, 2006 7:59 AM

128 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

Figure 6-1. The memory layout of some features in the Scrabble game program

You’ll also notice a few additional features of the Console class that are used: the background
color and foreground color. We will restrain ourselves from using the Console::Beep method.

Listing 6-10. The Scrabble Program

// Scrabble.cpp

using namespace System;
using namespace System::Collections::Generic;

enum class Characters { NEWLINE = 13 };

// Letter represents the different tile letters and the blank, represented
// by _
enum class Letter { _ = 0, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S,
T, U, V, W, X, Y, Z };

ScrabbleGame

NEELXBC

NTAMJII

ORSIAQW

Player’s Tiles Lists:

G
CIRENEG
NO
ET

OF WRO

Players

E L
B

gameBoard

spaces bag

E

Hogenson_705-2C06.fm Page 128 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 129

// PlayType represents the direction of play: across, down, or pass.
enum class PlayType { Across, Down, Pass };

// The types of spaces on the board.
// DLS == Double Letter Score
// DWS == Double Word Score
// TLS == Triple Letter Score
// TWS == Triple Word Score
enum class SpaceType { Normal = 0, DLS = 1, DWS = 2, TLS = 3, TWS = 4, Center = 5 };

// A Scrabble Tile contains a letter and a fixed point value
// that depends on the letter. We also include a property for the
// letter that a blank tile represents once it is played.
// Tiles are not the same as board spaces: tiles are placed into
// board spaces as play goes on.
ref struct Tile
{
 property Letter LetterValue;
 property int PointValue;
 property Char BlankValue;

 // This array contains the static point values of each tile
 // in alphabetical order, starting with the blank.
 static array<int>^ point_values =
 {0, 1, 3, 3, 2, 1, 4, 2, 4, 1, 8, 5, 1, 2, 1, 1, 3, 10, 1, 1, 1, 1,
 4, 3, 8, 4, 10};

 // The Tile constructor initializes the tile from its letter
 // and the point value.
 Tile(Letter letter)
 {
 LetterValue = letter;
 PointValue = point_values[safe_cast<int>(letter)];
 }

 // Used when displaying the tile on the gameboard
 virtual String^ ToString() override
 {
 // Format(LetterValue) won't work because the compiler
 // won't be able to identify the right overload when the
 // type is an enum class.
 return String::Format("{0}", LetterValue);
 }
};

Hogenson_705-2C06.fm Page 129 Thursday, October 19, 2006 7:59 AM

130 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

ref struct Player
{
 int number; // number specifying which player this is

 List<Tile^>^ tiles; // the player's rack of tiles

 // The number of tiles in the player's rack is
 // normally 7, but may be fewer at the end of the game.
 property int TileCount
 {
 int get() { return tiles->Count; }
 }

 property String^ Name; // the name of the player

 property int Score; // the player's cumulative point total

 // the constructor
 Player(String^ s, int n) : number(n)
 {
 Name = s;
 Score = 0;
 Console::WriteLine("Player {0} is {1}.", n, Name);
 }

 // Display the player's rack of tiles.
 void PrintPlayerTiles()
 {
 Console::WriteLine("Tiles in hand: ");
 for (int j = 0; j < TileCount; j++)
 {
 Console::Write("{0} ", tiles[j]->ToString());
 }
 Console::WriteLine();
 }
};

// This class is the main class including all the functionality
// and data for a Scrabble game.
ref class ScrabbleGame
{
 // Literals are constants that can be initialized in the class body.
 literal int TILE_COUNT = 100; // the number of tiles altogether
 literal int MAX_TILES_IN_HAND = 7; // the maximum number of tiles in each hand

Hogenson_705-2C06.fm Page 130 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 131

 // the array of players
 array<Player^>^ players;

 // spaces is the array of board spaces.
 static array<int, 2>^ spaces = gcnew array<int, 2>
 { { 4, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 4 },
 { 0, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 2, 0 },
 { 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0 },
 { 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1 },
 { 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0 },
 { 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 0 },
 { 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0 },
 { 4, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 4 },
 { 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0 },
 { 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 0 },
 { 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0 },
 { 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1 },
 { 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0 },
 { 0, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 2, 0 },
 { 4, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 4 }};

 // spaceTypeColors tell us how to draw the tiles when displaying the
 // board at the console.
 static initonly array<ConsoleColor>^ spaceTypeColors = { ConsoleColor::Gray,
 ConsoleColor::Cyan, ConsoleColor::Red, ConsoleColor::Blue,
 ConsoleColor::DarkRed, ConsoleColor::Red };

 // the gameboard representing all played tiles
 array<Tile^, 2>^ gameBoard;

 // the bag, containing the tiles that have not yet been drawn
 List<Tile^>^ bag;

 // an array of the amount of each tile
 static initonly array<int>^ tilePopulation = gcnew array<int>
 { 2, 9, 2, 2, 4, 12, 2, 3, 2, 9, 1, 1, 4, 2, 6, 8, 2, 1, 6, 4, 6, 4, 2, 2, 1, 2,
 1 };

 int nPlayer; // the number of players in this game
 int playerNum; // the current player
 int moveNum; // count of the number of moves
 Random^ random; // a random number generator
 bool gameOver; // set to true when a condition results in the end of the game
 bool endBonus; // true at the end of the game when a player uses up all of
 // his or her tiles

Hogenson_705-2C06.fm Page 131 Thursday, October 19, 2006 7:59 AM

132 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 // pass_count counts the number of consecutive passes
 // (when players do not make a play).
 // This is used to find out if everyone passes one after the other,
 // in which case the game is over.
 int pass_count;

 // There are 15 spaces in the board. These constants are used in the static
 // constructor to create the board using symmetry.
 literal int BOARD_SIZE = 15;
 literal int BOARD_SIZEM1 = BOARD_SIZE - 1;
 literal int BOARD_MID = 7;
 literal int TILE_TYPES = 27;

public:
 // The instance constructor creates the array of players
 // and the tile bag, which would have to be re-created for
 // each game.
 ScrabbleGame(unsigned int numPlayers) : nPlayer(numPlayers)
 {
 moveNum = 0;
 random = gcnew Random();
 // Create the players.
 players = gcnew array<Player^>(numPlayers);
 for (unsigned int i = 0; i < numPlayers; i++)
 {
 Console::Write("Player {0} enter name: ", i);
 String^ s = Console::ReadLine();
 players[i] = gcnew Player(s, i);
 }
 // Initialize the bag tiles.
 bag = gcnew List<Tile^>(TILE_COUNT);
 for (int i = 0; i < TILE_TYPES; i++)
 {
 for (int j = 0; j < tilePopulation[i]; j++)
 {
 Letter letter = safe_cast<Letter>(i);
 bag->Add(gcnew Tile(letter));
 }
 }
 // The gameboard consists of an array of null pointers initially.
 gameBoard = gcnew array<Tile^, 2>(BOARD_SIZE, BOARD_SIZE);
 }

Hogenson_705-2C06.fm Page 132 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 133

 // Display the current scores and tiles in the bag or
 // in each player's rack.
 void PrintScores()
 {
 Console::Write("Current stats: ");
 if (bag->Count != 0)
 {
 Console::WriteLine("{0} tiles remaining in tile bag.", bag->Count);
 }
 else
 {
 Console::WriteLine("No tiles remaining in tile bag.");
 }

 for (int i = 0; i < nPlayer; i++)
 {
 Console::WriteLine("{0,-10} -- Score: {1,3} Number of tiles: {2} -- ",
 players[i]->Name, players[i]->Score, players[i]->TileCount);
 }
 }

 // Display the permanent gameboard (overload).
 void PrintBoard()
 {
 PrintBoard(gameBoard);
 }

 // Display the gameboard. This overload takes a board
 // as an argument, so it is possible to display the proposed
 // play before committing it to the permanent gameboard.
 void PrintBoard(array<Tile^, 2>^ board)
 {
 Console::WriteLine();
 Console::Write(" ");
 for (int i = 0; i < BOARD_SIZE; i++)
 Console::Write(" {0:X1} ", i);
 Console::WriteLine();
 for (int i = 0; i < BOARD_SIZE; i++)
 {
 Console::Write(" {0:X1} ", i);
 for (int j = 0; j < BOARD_SIZE; j++)
 {

Hogenson_705-2C06.fm Page 133 Thursday, October 19, 2006 7:59 AM

134 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 if (board[i, j] == nullptr)
 {
 Console::BackgroundColor = spaceTypeColors[spaces[i, j]];
 Console::Write(" ");
 // The foreground and background colors are restored to
 // the colors that existed when the current process began.
 Console::ResetColor();
 }
 else
 {
 Console::BackgroundColor = ConsoleColor::Black;
 Console::ForegroundColor = ConsoleColor::White;
 Letter letter = board[i, j]->LetterValue;
 if (letter == Letter::_)
 {
 Console::Write(" {0:1} ", board[i,j]->BlankValue);
 }
 else
 {
 Console::Write(" {0:1} ", board[i, j]);
 }
 Console::ResetColor();
 }
 }
 Console::WriteLine();
 }
 Console::WriteLine();
 }

 // Draw a tile from the bag and return it.
 // Returns null if the bag is empty.
 // The parameter keep is true if the tile is drawn during the game,
 // false if the tile is drawn at the beginning of the game
 // to see who goes first.
 Tile^ DrawTile(bool keep)
 {
 if (bag->Count == 0) // Return nullptr if there are no tiles left.
 {
 return nullptr;
 }
 int random_index = safe_cast<int>((random->NextDouble() * bag->Count));
 Tile^ tile = bag[random_index];
 if (keep)
 bag->RemoveAt(random_index);
 return tile;
 }

Hogenson_705-2C06.fm Page 134 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 135

 // Determine who goes first and draw tiles. Each player draws
 // a tile and whoever has the letter closest to the beginning of
 // the alphabet goes first. Return the player number of the first
 // player.
 int PreGame()
 {
 Console::WriteLine("Each player draws a tile to see who goes first.\n"
 "The player closest to the beginning of the alphabet goes first.");
 // Each player draws one tile to see who goes first. If both players
 // draw the same tile, everyone redraws.
 array<Tile^>^ drawTiles = gcnew array<Tile^>(nPlayer);
 bool firstPlayerFound = false;
 int firstPlayerIndex = 0;
 do
 {

 for (int i = 0; i < nPlayer; i++)
 {
 drawTiles[i] = DrawTile(false);
 Console::WriteLine("{0} draws {1}.", players[i]->Name,
 drawTiles[i]->LetterValue);
 if (i > 0 && drawTiles[i]->LetterValue <
 drawTiles[firstPlayerIndex]->LetterValue)
 {
 firstPlayerIndex = i;
 }
 }
 firstPlayerFound = true;

 // If someone else has the same tile, throw back and redraw.
 for (int i = 0; i < nPlayer; i++)
 {
 if (i == firstPlayerIndex)
 continue;
 if (drawTiles[i]->LetterValue ==
 drawTiles[firstPlayerIndex]->LetterValue)
 {
 Console::WriteLine("Duplicate tile {0}. Redraw.",
 drawTiles[i]->LetterValue);
 firstPlayerFound = false;
 }
 }
 } while (! firstPlayerFound);
 Console::WriteLine("{0} goes first.", players[firstPlayerIndex]->Name);

Hogenson_705-2C06.fm Page 135 Thursday, October 19, 2006 7:59 AM

136 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 // Everyone draws their tiles.
 for (int i = 0; i < nPlayer; i++)
 {
 players[i]->tiles = gcnew List<Tile^>(MAX_TILES_IN_HAND);
 for (int j = 0; j < MAX_TILES_IN_HAND; j++)
 {
 players[i]->tiles->Add(DrawTile(true));
 }
 Console::Write("{0} draws tiles: ", players[i]->Name, i);
 for (int j = 0; j < MAX_TILES_IN_HAND; j++)
 {
 Console::Write("{0} ", players[i]->tiles[j]->ToString());
 }
 Console::WriteLine();
 }
 return firstPlayerIndex;
 }

 // Play plays the game from start to finish
 // return the winning player.
 Player^ Play(int firstPlayer)
 {
 playerNum = firstPlayer;
 gameOver = false;
 do
 {
 gameOver = PlayerMove();
 playerNum = (playerNum + 1) % nPlayer;
 PrintScores();
 Console::WriteLine("Press ENTER to continue...");
 Console::ReadLine();
 Console::Clear();
 moveNum++;
 } while (! gameOver);

 // The game is over.
 AdjustPointTotals();
 Console::WriteLine("Final scores: ");
 PrintScores();
 int winningPlayer = FindWinner();
 if (winningPlayer != -1)
 {
 return players[winningPlayer];
 }
 else return nullptr;
 }

Hogenson_705-2C06.fm Page 136 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 137

 // At the end of the game, point totals are adjusted according to
 // the following scheme: all players lose the point total of any
 // unplayed tiles; if a player plays all her tiles, she
 // receives the point totals of all unplayed tiles.
 void AdjustPointTotals()
 {
 int total_point_bonus = 0;
 for (int i=0; i < nPlayer; i++)
 {
 if (players[i]->TileCount > 0)
 {
 Console::WriteLine("{0} remaining tiles and score adjustments: ",
 players[i]->Name);
 int point_deduction = 0;
 for each (Tile^ t in players[i]->tiles)
 {
 Console::Write(" {0} -{1} ", t->LetterValue, t->PointValue);
 point_deduction += t->PointValue;
 }
 Console::WriteLine();
 players[i]->Score -= point_deduction;
 total_point_bonus += point_deduction;
 }
 }
 if (endBonus)
 {
 Console::WriteLine("{0}'s bonus for using the last tile is {1}.",
 players[playerNum]->Name, total_point_bonus);
 players[playerNum]->Score += total_point_bonus;
 }
 }

 // Find out which player won.
 int FindWinner()
 {
 if (! gameOver)
 {
 return -1;
 }
 int leadingPlayer = 0;
 for (int i = 1; i < nPlayer; i++)
 {
 if (players[i]->Score > players[leadingPlayer]->Score)
 {
 leadingPlayer = i;
 }
 }

Hogenson_705-2C06.fm Page 137 Thursday, October 19, 2006 7:59 AM

138 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 for (int i = 0; i < nPlayer; i++)
 {
 // Check for a tie.
 if (i != leadingPlayer && players[i]->Score ==
 players[leadingPlayer]->Score)
 {
 return -1;
 }
 }
 return leadingPlayer;
 }

 // Implement a pass move in which a player throws back a certain
 // number of her tiles and draws new ones.
 // Return true if successful.
 bool Pass(List<Tile^>^ workingTiles)
 {
 if (bag->Count != 0)
 {
 int code;
 // Get the desired tiles to replace to
 // the bag from the user.
 Console::WriteLine("Enter tiles to throw back: ");
 do
 {
 code = Console::Read();
 wchar_t character = safe_cast<wchar_t>(code);
 Letter letter = Letter::_;
 if (character == safe_cast<wchar_t>(Characters::NEWLINE))
 {
 Console::ReadLine();
 break;
 }
 if (character == '_')
 {
 letter = Letter::_;
 }
 else if (Char::IsLetter(character))
 {
 if (Char::IsUpper(character))
 {
 letter = safe_cast<Letter>(character - 'A' + 1);
 }
 else // character is a lowercase letter.
 {
 letter = safe_cast<Letter>(character - 'a' + 1);
 }
 }

Hogenson_705-2C06.fm Page 138 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 139

 // See if the letter is in the player's hand.
 Tile^ tile = gcnew Tile(letter);
 Tile^ tileToRemove = nullptr;
 bool tileFound = false;
 for each (Tile^ t in workingTiles)
 {
 if (t->LetterValue == tile->LetterValue)
 {
 tileToRemove = t;
 tileFound = true;
 break;
 }
 }
 if (tileFound == true)
 {
 workingTiles->Remove(tileToRemove);
 bag->Add(tile);
 }
 else // The letter was not found.
 {
 Console::WriteLine("You do not have enough {0}s to pass back.",
 letter);
 Console::WriteLine("Press any key to continue...");
 Console::ReadLine();
 return false;
 }
 } while (code != safe_cast<int>('\n'));
 } // if bag->Count == 0

 Console::Write("Are you sure you want to pass (Y/N)?");
 String^ response = Console::ReadLine();
 if (response->StartsWith("Y") || response->StartsWith("y"))
 {
 if (bag->Count > 0)
 {
 Console::Write("{0} draws tiles: ", players[playerNum]->Name);
 // Copy the working tiles to the player tiles.
 players[playerNum]->tiles = workingTiles;
 while (players[playerNum]->tiles->Count < MAX_TILES_IN_HAND)
 {
 Tile^ tile = DrawTile(true);
 if (tile != nullptr)
 {
 players[playerNum]->tiles->Add(tile);
 Console::Write(" {0} ", tile->ToString());
 }

Hogenson_705-2C06.fm Page 139 Thursday, October 19, 2006 7:59 AM

140 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 else // The bag is empty.
 {
 Console::WriteLine("\nThe tile bag is empty.");
 break;
 }
 }
 Console::WriteLine();
 }
 }
 else
 {
 // A false return will indicate that the user has
 // changed his/her mind and may not want to pass.
 return false;
 }
 return true;
 }

private:
 PlayType GetPlayType()
 {
 // Input the direction to play.
 Console::WriteLine(
 "Enter Direction to Play (A = across, D = down) or P to pass:");
 String^ playTypeString = Console::ReadLine();

 if (playTypeString == "P")
 {
 return PlayType::Pass;
 }
 if (playTypeString == "A")
 {
 return PlayType::Across;
 }
 else if (playTypeString == "D")
 {
 return PlayType::Down;
 }
 else
 {
 Console::WriteLine("Sorry, I didn't understand that input.");
 throw gcnew Exception();
 }
 }

Hogenson_705-2C06.fm Page 140 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 141

 // Get the position of the start of the play on the board.
 bool GetPlayStartPosition(int% row, int% col)
 {
 // Input the row and column of the first letter.
 Console::Write(
 "Enter Location to Play as [row][col]: 00 (top left) to EE (bottom right): ");
 String^ locString = Console::ReadLine();

 // Parse as a hex number.
 int x = Int32::Parse(locString,
 System::Globalization::NumberStyles::HexNumber);
 row = x / 16;
 col = x % 16;
 if (row > 14 || col > 14 || row < 0 || col < 0)
 {
 Console::WriteLine("I did not understand that input.");
 Console::WriteLine("The first digit is the row (0 to E);"
 " the second is the column (0 to E).");
 throw gcnew Exception();
 }

 // Check to see that this is an unoccupied space.
 if (gameBoard[row, col] != nullptr)
 {
 Console::WriteLine("Sorry, that space is occupied by the tile: {0}",
 gameBoard[row, col]);
 return false;
 }
 return true;
 }

 // Return true if the play is successful.
 // Return false if the play is invalid and needs to be restarted.
 bool GetTilesForPlay(int row, int col, PlayType playType,
 List<Tile^>^ workingTiles, array<Tile^, 2>^ workingBoard)
 {
 // Get the desired tiles to play from the user.
 Console::WriteLine(
 "Enter letters to play (_<letter> to play a blank as <letter>): ");
 int code;

Hogenson_705-2C06.fm Page 141 Thursday, October 19, 2006 7:59 AM

142 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 do
 {
 code = Console::Read();
 wchar_t character = safe_cast<wchar_t>(code);
 Letter letter = Letter::_;
 if (character == safe_cast<wchar_t>(Characters::NEWLINE))
 {
 Console::ReadLine();
 break;
 }
 if (character == '_')
 {
 letter = Letter::_;
 // If a blank is entered, read the next character.
 code = Console::Read();
 character = safe_cast<wchar_t>(code);
 }
 else if (Char::IsLetter(character))
 {
 if (Char::IsUpper(character))
 {
 letter = safe_cast<Letter>(character - 'A' + 1);
 }
 else // character is a lowercase letter.
 {
 letter = safe_cast<Letter>(character - 'a' + 1);
 }
 }

 // See if the letter is in the player's hand.
 Tile^ tile = gcnew Tile(letter);
 if (letter == Letter::_)
 {
 tile->BlankValue = character;
 }
 Tile^ tileToRemove = nullptr;
 bool tileFound = false;
 for each (Tile^ t in workingTiles)
 {
 if (t->LetterValue == tile->LetterValue)
 {
 tileToRemove = t;
 tileFound = true;
 }
 }

Hogenson_705-2C06.fm Page 142 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 143

 if (tileFound)
 {
 workingTiles->Remove(tileToRemove);
 workingBoard[row, col] = tile;
 if (playType == PlayType::Across)
 {
 while (col < BOARD_SIZE && workingBoard[row, col] != nullptr)
 {
 col++;
 }
 // We've reached the end of the board, so the play is complete.
 if (col == BOARD_SIZE)
 {
 // Consume any additional input.
 Console::ReadLine();
 return true;
 }
 }
 else
 {
 while (row < BOARD_SIZE && workingBoard[row, col] != nullptr)
 {
 row++;
 }
 if (row == BOARD_SIZE)
 {
 // Consume any additional input.
 Console::ReadLine();
 return true;
 }
 }
 }
 else // The letter was not found.
 {
 Console::WriteLine("You do not have enough {0}s to play.", letter);
 // Consume any additional character input.
 Console::ReadLine();
 return false;
 }

 } while (code != safe_cast<int>('\n'));

 return true;
 }

Hogenson_705-2C06.fm Page 143 Thursday, October 19, 2006 7:59 AM

144 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 // Return true if the player accepts the play.
 bool ConfirmPlay(int score)
 {
 Console::WriteLine("This play is worth {0} points.", score);
 Console::Write("Is this your final play (Y/N)?");
 String^ response = Console::ReadLine();
 if (response->StartsWith("Y") || response->StartsWith("y"))
 {
 // Reset the pass count.
 pass_count = 0;
 return true;
 }
 return false;
 }

 // Return the number of tiles drawn.
 int ReplacePlayedTiles()
 {
 int count = 0;
 Console::Write("{0} draws tiles: ", players[playerNum]->Name);

 while (players[playerNum]->tiles->Count < MAX_TILES_IN_HAND)
 {
 Tile^ tile = DrawTile(true);
 if (tile != nullptr)
 {
 count++;
 players[playerNum]->tiles->Add(tile);
 Console::Write(" {0} ", tile->ToString());
 }
 else // The bag is empty.
 {
 Console::WriteLine("\nThe tile bag is empty.");
 return count;
 }
 }
 Console::WriteLine();
 return count;
 }
 // Commit the confirmed play to the permanent gameboard.
 void RecordPlay(List<Tile^>^ workingTiles, array<Tile^, 2>^ workingBoard)
 {
 // Copy the working tiles to the player tiles.
 players[playerNum]->tiles = workingTiles;

Hogenson_705-2C06.fm Page 144 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 145

 // Copy the working board to the board.
 for (int i = 0; i <BOARD_SIZE; i++)
 {
 for (int j = 0; j <BOARD_SIZE; j++)
 {
 gameBoard[i, j] = workingBoard[i, j];
 }
 }
 }

 // Update a player's score.
 // Return the new point total.
 int UpdateScore(int playerNum, int scoreForPlay)
 {
 // Increment the player's score.
 players[playerNum]->Score += scoreForPlay;
 return players[playerNum]->Score;
 }

 array<Tile^, 2>^ GetWorkingBoard()
 {
 array<Tile^, 2>^ workingBoard = gcnew array<Tile^, 2>(BOARD_SIZE, BOARD_SIZE);
 // Copy the board into a working board.
 for (int i = 0; i < BOARD_SIZE; i++)
 {
 for (int j = 0; j < BOARD_SIZE; j++)
 {
 workingBoard[i, j] = gameBoard[i, j];
 }
 }
 return workingBoard;
 }

 List<Tile^>^ GetWorkingTiles()
 {
 List<Tile^>^ workingTiles = gcnew List<Tile^>(MAX_TILES_IN_HAND);
 // Copy each tile into a working hand.
 for each(Tile^ t in players[playerNum]->tiles)
 {
 workingTiles->Add(t);
 }
 return workingTiles;
 }

Hogenson_705-2C06.fm Page 145 Thursday, October 19, 2006 7:59 AM

146 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

public:

 // PlayerMove implements a player making a play.
 // Return true if the game is over.
 bool PlayerMove()
 {
 bool gameOver = false;
 bool moveComplete = false;

 while (! moveComplete)
 {
 try
 {
 List<Tile^>^ workingTiles = GetWorkingTiles();
 array<Tile^, 2>^ workingBoard = GetWorkingBoard();
 PrintBoard();
 Console::WriteLine("{0}'s turn.", players[playerNum]->Name);
 players[playerNum]->PrintPlayerTiles();

 PlayType playType = GetPlayType();

 if (playType == PlayType::Pass)
 {
 moveComplete = Pass(workingTiles);
 if (moveComplete)
 {
 // The pass was completed.
 pass_count++;
 // If everyone passes and the bag is empty, the game ends.
 if (pass_count == nPlayer && bag->Count == 0)
 {
 gameOver = true;
 }
 return gameOver;
 }
 else
 {
 // The pass was cancelled, restart play.
 continue;
 }
 }
 int row, col;
 if (! GetPlayStartPosition(row, col))
 continue;
 if (! GetTilesForPlay(row, col, playType, workingTiles, workingBoard))
 continue;

Hogenson_705-2C06.fm Page 146 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 147

 // Calculate the score.
 int scoreForPlay = CalculateScore(row, col, playType, workingBoard);
 PrintBoard(workingBoard);
 if (scoreForPlay == -1)
 {
 Console::WriteLine("The move is not a legal move.");
 if (moveNum == 0)
 {
 Console::WriteLine("The first play must use the center square.");
 }
 else
 {
 Console::WriteLine(
 "You must use at least one existing tile on the board.");
 }
 Console::WriteLine();
 continue;
 }

 if (!ConfirmPlay(scoreForPlay))
 continue;

 RecordPlay(workingTiles, workingBoard);

 // If more tiles are in the bag, draw tiles to replace those played.
 if (bag->Count > 0)
 {
 ReplacePlayedTiles();
 }

 // The game ends when a player "goes out" -- she uses up all
 // the tiles in her hand and there are none in the bag.
 // The player is eligible for the end game bonus.
 if (bag->Count == 0 && players[playerNum]->tiles->Count == 0)
 {
 endBonus = true;
 gameOver = true;
 }
 UpdateScore(playerNum, scoreForPlay);
 moveComplete = true;
 }
 catch(Exception^)
 {
 moveComplete = false;
 }
 }
 return gameOver;
 }

Hogenson_705-2C06.fm Page 147 Thursday, October 19, 2006 7:59 AM

148 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 // This function calculates the score for a move, if the move is a legal play.
 // If the move is not legal, return -1.
 int CalculateScore(int row, int col, PlayType direction,
 array<Tile^, 2>^ newBoard)
 {
 int cumScore = 0;
 PlayType crossDirection;

 int wordScore = 0;
 bool letterBonus = false;
 bool wordBonus = false;
 int letterMultiplier = 1;
 int wordMultiplier = 1;
 bool isLegalMove = false;
 int tilesPlayed = 0;

 if (direction == PlayType::Down)
 {
 crossDirection = PlayType::Across;
 // Find the start of the word being made in the main direction.
 while (row >= 0 && newBoard[row, col] != nullptr)
 {
 row--;
 }
 // We overshoot, so now back off by one.
 row++;
 }
 else // PlayType::Across
 {
 crossDirection = PlayType::Down;
 while (col >= 0 && newBoard[row, col] != nullptr)
 {
 col--;
 }
 // We overshoot, so back off by one.
 col++;
 }

 while (row < BOARD_SIZE && col < BOARD_SIZE && newBoard[row, col] != nullptr)
 {
 if (moveNum == 0 && row == 7 && col == 7)
 {
 isLegalMove = true;
 }
 letterMultiplier = 1;

Hogenson_705-2C06.fm Page 148 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 149

 // If the old gameboard space here was empty,
 // look at the space below the tile.
 if (gameBoard[row, col] == nullptr)
 {
 tilesPlayed++;
 switch (spaces[row, col])
 {
 case SpaceType::DLS:
 letterBonus = true;
 letterMultiplier = 2;
 break;
 case SpaceType::Center:
 case SpaceType::DWS:
 wordBonus = true;
 wordMultiplier = 2;
 break;
 case SpaceType::TLS:
 letterBonus = true;
 letterMultiplier = 3;
 break;
 case SpaceType::TWS:
 wordBonus = true;
 wordMultiplier = 3;
 break;
 default:
 break;
 }
 // Identify any cross-words by moving backward to the
 // first nonempty space.
 int rowCrossBegin = row;
 int colCrossBegin = col;
 int rowCross = row;
 int colCross = col;
 int crossScore = 0;
 if (crossDirection == PlayType::Down)
 {
 while (rowCrossBegin >= 0 &&
 newBoard[rowCrossBegin, colCrossBegin] != nullptr)
 {
 rowCrossBegin--;
 }
 rowCrossBegin++; // Increment to beginning of word.
 }

Hogenson_705-2C06.fm Page 149 Thursday, October 19, 2006 7:59 AM

150 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 else // Cross-direction is across.
 {
 while (colCrossBegin >= 0 &&
 newBoard[rowCrossBegin, colCrossBegin] != nullptr)
 {
 colCrossBegin--;
 }
 colCrossBegin++; // Increment to the beginning of word.
 }

 // Now scan forward for crosswords.
 int rowCrossEnd = row;
 int colCrossEnd = col;
 if (crossDirection == PlayType::Down)
 {
 while (rowCrossEnd < BOARD_SIZE &&
 newBoard[rowCrossEnd, colCrossEnd] != nullptr)
 {
 rowCrossEnd++;
 }
 rowCrossEnd--; // Decrement to beginning of word.
 }
 else // Cross-direction is across.
 {
 while (colCrossEnd < BOARD_SIZE &&
 newBoard[rowCrossEnd, colCrossEnd] != nullptr)
 {
 colCrossEnd++;
 }
 colCrossEnd--; // Decrement to the beginning of word.
 }
 if (rowCrossBegin != rowCrossEnd ||
 colCrossBegin != colCrossEnd)
 {
 // A crossword was found.
 // This counts as using existing tiles,
 // so this is definitely a legal move.
 isLegalMove = true;
 if (crossDirection == PlayType::Down)
 {
 for (rowCross = rowCrossBegin; rowCross <= rowCrossEnd;
 rowCross++)
 {
 // You only account for special bonuses if the tile on that
 // bonus square is one you played.

Hogenson_705-2C06.fm Page 150 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 151

 if (rowCross == row && colCross == col)
 {
 crossScore += newBoard[rowCross, colCross]->PointValue
 * letterMultiplier;
 }
 else
 crossScore += newBoard[rowCross, colCross]->PointValue;
 }
 }
 else
 {
 for (colCross = colCrossBegin; colCross <= colCrossEnd;
 colCross++)
 {
 if (rowCross == row && colCross == col)
 {
 crossScore += newBoard[rowCross, colCross]->PointValue
 * letterMultiplier;
 }
 else
 crossScore += newBoard[rowCross, colCross]->PointValue;
 }
 }
 crossScore *= wordMultiplier;
 cumScore += crossScore;
 } // end of block for if there is a cross-word

 } // end of block for if the space has a new tile on it
 else
 {
 // The space is occupied by a letter that was already there.
 // All plays other than the first must contain a letter that
 // is already present, so if this is the case, then the play is
 // a legal play.
 isLegalMove = true;
 }

 wordScore += letterMultiplier * newBoard[row, col]->PointValue;

 if (direction == PlayType::Down)
 row++;
 else
 col++;
 }

Hogenson_705-2C06.fm Page 151 Thursday, October 19, 2006 7:59 AM

152 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 wordScore *= wordMultiplier;
 cumScore += wordScore;
 // fifty-point bonus for using all your letters
 if (tilesPlayed == MAX_TILES_IN_HAND)
 {
 cumScore += 50;
 }
 if (isLegalMove)
 return cumScore;
 else
 return -1;
 }
};

int main()
{

 int nPlayer;
 bool success = false;
 Console::WindowHeight = 50;
 do
 {
 Console::WriteLine(
 "Welcome to Scrabble. Enter the number of players (2 to 4).");
 String^ input = Console::ReadLine();
 try
 {
 nPlayer = Int32::Parse(input);
 if (nPlayer < 2 || nPlayer > 4)
 throw gcnew Exception();
 success = true;
 }
 catch(Exception^)
 {
 success = false;
 }
 } while (! success);

 ScrabbleGame^ game = gcnew ScrabbleGame(nPlayer);
 int firstPlayer = game->PreGame();
 Player^ winner = game->Play(firstPlayer);
 if (winner != nullptr)
 Console::WriteLine("{0} wins!", winner->Name);
 Console::ReadLine();
 return 0;
}

Hogenson_705-2C06.fm Page 152 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 153

Figure 6-2 shows an example of the Scrabble game in operation. It may be reminiscent of
many an old text-based computer game from the pregraphics era.

Figure 6-2. The Scrabble game in progress, with some useful two-letter words and words with Q
and no vowels

As an exercise, try implementing the functionality to save and restore games in progress,
by writing the game state out to a text file and reading it back in.

The this Pointer
As you’ve noticed, we used the this pointer in the previous examples. In a reference type, the
this pointer is a handle to the object type. Here’s a possible use of the this pointer. The code
in Listing 6-11 tracks instances of objects created of that type in a static data structure. Note the
use of the static constructor to create the List object. This example uses a destructor (~R) and
a finalizer (!R) that work together to orchestrate object cleanup, as explained later in this chapter.

Hogenson_705-2C06.fm Page 153 Thursday, October 19, 2006 7:59 AM

154 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

Listing 6-11. Using the this Pointer

// instance_tracker.cpp

using namespace System;
using namespace System::Collections::Generic;

// ref type
ref class R
{
 static List<R^>^ instanceTrackingList;

 static R()
 {
 instanceTrackingList = gcnew List<R^>;
 }

 public:

 R(String^ s)
 {
 Label = s;
 instanceTrackingList->Add(this);
 }

 property String^ Label;

 static int EnumerateInstances()
 {
 int i = 0;
 for each (R^ r in instanceTrackingList)
 {
 i++;
 Console::WriteLine(r->Label);
 }
 return i;
 }

 ~R() // destructor
 {
 // When invoking a function through the this pointer,
 // use the indirection operator (->).
 this->!R();
 }

Hogenson_705-2C06.fm Page 154 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 155

 !R() // finalizer
 {
 instanceTrackingList->Remove(this);
 }

 // etc.
};

int main()
{
 R r1("ABC");
 R^ r2 = gcnew R("XYZ");

 int count = R::EnumerateInstances();
 Console::WriteLine("Object count: " + count);

 delete r2;
 count = R::EnumerateInstances();
 Console::WriteLine("Object count: " + count);
}

The output of Listing 6-11 is shown here:

ABC
XYZ
Object count: 2
ABC
Object count: 1

The this pointer in a value type cannot be a handle since a handle points to the managed
heap and a value type might not be on the managed heap. Instead, it is an interior pointer. An
interior pointer is a pointer that points to some address in a managed object. This could be some
location within a type or the beginning of the type itself in a value type. The runtime updates
the value of the interior pointer (interior_ptr) if the object is moved. Interior pointers are
declared like this:

interior_ptr<Type> ptr = < pointer expression >

where pointer_expression evaluates to the address of some part of a managed type. Listing 6-12
demonstrates using the this pointer in a value type. In addition to interior_ptr, this example
uses a pinning pointer (pin_ptr), which causes a potentially movable object to be fixed in posi-
tion. Pinning pointers are declared like this:

pin_ptr<Type> pin_ptr = < pointer expression >

The pinning pointer is necessary to convert an interior pointer into an integral value to
display, since the compiler will only allow pointers to managed types (including interior pointers)

Hogenson_705-2C06.fm Page 155 Thursday, October 19, 2006 7:59 AM

156 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

to be converted to integers if they are first pinned by creating a pin_ptr. Interior pointers can
be converted to pinning pointers of the same type.

Listing 6-12. Using this in a Value Type

// valuetype_this.cpp

using namespace System;

value class V
{
 int i, j;

 public:

 void PrintStartingAddress()
 {
 interior_ptr<V> ptr_to_this = this;
 pin_ptr<V> pinned_this = ptr_to_this;
 Console::WriteLine("Starting address of object is 0x{0:x}",
 reinterpret_cast<int>(pinned_this));
 }
};

int main()
{
 V v;
 v.PrintStartingAddress();
}

Access Levels for Classes
As you saw in Chapter 3, in C++/CLI it is possible to apply type visibility modifiers such as
public or private to a class as a whole, not just to members of the class. This affects the visibility of
the types from outside the assembly in which they are defined. The rules are the same as those
for functions discussed in Chapter 5. For example, you can use the modifier internal to make
a type visible in its own assembly but not outside of it.

In addition to the usual three levels of access control (public, private, and protected),
additional levels of access control are available that provide the ability to specify separate
levels of access for client code outside and inside the assembly. For example, the new access
control specifier internal is used to indicate that the given element is available only to other
code in the same assembly. In other words, the code is private outside the assembly, but public
inside the assembly. In addition to internal, you can use protected public to refer to members
that are public inside the assembly and protected outside; and private protected to refer to
members that are protected inside the assembly and private outside. The order of the accessi-
bility modifiers is not significant, so protected public means the same as public protected,
and private protected means the same as protected private. The key to remembering the

Hogenson_705-2C06.fm Page 156 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 157

meaning of these pairs is to remember that the more restrictive permissions always apply
outside the assembly. Table 6-2 summarizes the accessibility modifiers.

Native and Managed Classes
In this chapter, you’ve looked at reference classes and value classes, the two broad categories
of managed types. If you deal with native code, you may be wondering how native classes fit
into the picture. Native and managed types may coexist, even in the same class. It is possible
for a native type to be contained in a managed type, and vice versa. The details are often some-
what cumbersome, so I reserve them for Chapter 12, but a sneak preview will give you a hint of
what’s possible and also help give the background for some of what I say about finalizers later
in this chapter.

But first, a little background and context. When would you need to write code like this? If
you are extending a native application with managed types, you’ll probably need to use the
native types in your managed types. If in addition the native types need to refer to managed
types, you need to use the gcroot template to refer to them.

Using a Native Object in a Managed Type
When including native types in managed types, you must reference the native types via a
pointer to the object on the native heap. You cannot actually make the native type part of the
layout of the class, but everything in the class layout must be a managed type since the whole
object will be managed by the common language runtime. Thus, the code in Listing 6-13 is legal.

Listing 6-13. Using a Native Type in a Managed Type

// Forestry.cpp
using namespace System;
using namespace System::Runtime::InteropServices;

// a native class
class PlantData
{
 private:

Table 6-2. Accessibility Modifiers and Their Effect in Whether an Entity Is Visible

Modifiers Used Within Same Assembly Outside Assembly

public Yes Yes

private No No

protected To derived classes To derived classes

internal Yes No

protected public Yes To derived classes

private protected To derived classes No

Hogenson_705-2C06.fm Page 157 Thursday, October 19, 2006 7:59 AM

158 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 wchar_t* family;
 wchar_t* genus;
 wchar_t* species;

 public:

 PlantData(const wchar_t* botanical_name)
 {
 // Let's assume this method
 // populates its
 // fields with data from the database.
 }

};

// The following managed class contains a pointer to a native class.

ref class TreeSpecies
{
 PlantData* treedata;

 public:
 TreeSpecies(String^ genus, String^ species)
 {
 String^ botanical_name = gcnew String(genus + " " + species);

 // Use the Marshal class to create a pointer.
 // The managed class corresponding to a
 // pointer is IntPtr.
 IntPtr ip = Marshal::StringToHGlobalAnsi(botanical_name);

 // Cast that to the appropriate pointer type.
 const wchar_t* str = static_cast<const wchar_t*>(ip.ToPointer());
 treedata = new PlantData(str);
 Marshal::FreeHGlobal(ip);

 }

 ~TreeSpecies() { this->!TreeSpecies(); }
 !TreeSpecies() { if (treedata) delete treedata; }
};

Don’t worry too much about the details of the conversions from String to wchar_t*—this
is typical of the kind of type conversions you need to do when mixing managed and native code.
We’re simply using the Marshal class defined in the .NET Framework to create, ultimately, a

Hogenson_705-2C06.fm Page 158 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 159

pointer to a character array. The term marshal is a synonym for convert, although usually it
suggests converting parameters from native to managed and vice versa in the context of a function
call from managed to native code. However, it has come to mean converting between native
and managed objects in a general sense. More information on marshaling will be discussed in
Chapter 12.

We include the native type PlantData as a pointer, but it would be illegal to include the
native type by value. Including a pointer to the native heap creates code that cannot be verified
to be safe, since the runtime has no way of knowing whether you are accessing a valid native
pointer. Thus, you cannot have a native pointer or a native class in a class when compiling with
/clr:safe. You can, however, use pointers when compiling with /clr:pure, because a pointer
itself doesn’t result in the generation of native code. The intermediate language is actually
capable of representing pointers even if they are not verifiable. This is exactly what happens in
C# when in an unsafe block.

Finally, we include a destructor and finalizer in the type. The delete is called from the
finalizer, not the destructor, and we call the finalizer from the destructor. You’ll see more about
this later this chapter, but in this case it’s necessary to make sure that the native pointer is freed
even if the destructor is never called. A more robust way to do this by writing a template class to
embed the native pointer will be discussed in Chapter 12, after managed templates and some other
background have been covered.

Yes, it is also possible to include a managed type in a native class. To do it, you use the gcroot
template in the native type, with the managed type as a template parameter (see Listing 6-14). A
root is a handle that tracks a garbage-collected object. When roots exist, the object is still alive.
The idea behind the name gcroot is that the pointer designates the root of a garbage-collected
object on the managed heap. The gcroot template does not call the destructor on the managed
object when it goes out of scope, but there is a variant, auto_gcroot, that does. Both templates
are defined in the msclr namespace and require the inclusion of the appropriate header file.
Listing 6-14 illustrates the basic syntax.

Listing 6-14. Using a Managed Type in a Native Type

// gcroot_and_auto_gcroot.cpp

#include <msclr/gcroot.h>
#include <msclr/auto_gcroot.h>
using namespace System;
using namespace msclr;

// managed class R
ref class R
{
 public:
 void f()
 {
 Console::WriteLine("managed member function");
 }

Hogenson_705-2C06.fm Page 159 Thursday, October 19, 2006 7:59 AM

160 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 ~R()
 {
 Console::WriteLine("destructor");
 }

};

// native class N
class N
{
 gcroot<R^> r_gcroot;
 auto_gcroot<R^> r_auto_gcroot;

 public:
 N()
 {
 r_gcroot = gcnew R();
 r_gcroot->f();
 r_auto_gcroot = gcnew R();
 r_auto_gcroot->f();
 }

};

int main()
{
 N n;
 // When n goes out of scope, the destructor for the auto_gcroot object
 // will be executed, but not the gcroot object.
}

The output of Listing 6-14 is as follows:

managed member function
managed member function
destructor

You see only one call to the destructor—the destructor for the auto_gcroot object. Chapter 12
will present more examples of interoperability between managed and native types and functions.

Class Destruction and Cleanup
Typically, C++ classes that use limited resources, such as operating system device contexts,
database connections, files, and so on, are implemented using an idiom called RAII (Resource
Acquisition is Initialization). RAII specifies that acquiring resources is to be done in a constructor.
Having adopted such a pattern, the class design will have to deal with properly freeing these

Hogenson_705-2C06.fm Page 160 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 161

resources in a prompt and predictable manner to ensure an application’s best behavior and
performance. Native C++ programs use the destructor for this, and they can be assured that
whenever a block or stack frame is completed, temporary objects created on the stack will be
released, their destructors called, and any limited resources freed. Such assurances of prompt
freeing of resources are, at first glance, not available in the managed environment, when the
object isn’t really cleaned up until the garbage collector runs.

The CLI provides the Dispose method (and the interface IDisposable, which defines this
one method) to solve this problem. The Dispose method is never called directly from C++/CLI
code, as for example, you might in C# code. If you’re a C# programmer, you’ll want to pay close
attention to the information in this section since it differs markedly from the C# behavior. In
C#, you might call Dispose directly, or you might use the using statement to create a scope for
your object, and have the Dispose method called automatically at the end of that scope.

Instead, C++/CLI provides a more familiar (to classic C++ programmers) way to use the
RAII model. You implement a destructor much as you would in classic C++. Implementing a
destructor causes the object to implicitly implement IDisposable. The destructor, in fact,
becomes the Dispose method and hence implements the interface.

In C++/CLI, if you define a destructor as usual, you can be assured that your object’s
destructor will be called when the object goes out of scope as a result of the stack going out of
scope or the destruction of the enclosing object, or an explicit call to delete on a handle to the
object. delete is used to call the destructor for a handle object, so use delete if you need to call
the destructor, but aren’t using stack semantics. (There is no such thing as gcdelete; the delete
operator is able to serve for both native pointers and managed handles, since the appropriate
form may be determined from the entity being deleted.) The destructor is not called when the
garbage collector cleans up the object, so if you do not call delete for your handle, the destructor
won’t get called at all.

Finalizers
C++/CLI allows you to also define a function that gets called when the garbage collector actually
frees your object. This special function is called the finalizer. If you don’t deal with unmanaged
resources (e.g., native classes, native file handles, window handles, device contexts, and the
like), you don’t need finalizers, and you can skim this section. Just use destructors for your
usual cleanup operations. If you do use these resources, you need to read and understand this
section closely.

The runtime is allowed to call the finalizer at any time after the object is no longer being
used. There is no guaranteed order in which objects’ finalizers are called. The practical result
of this is that an object’s members (if they are also managed objects) may have already been
finalized by the time the finalizer runs on your object. Thus, you should use the destructor for
explicit cleanup of managed objects, or just allow the garbage collector to handle it.

The finalizer is indicated by a function preceded by an exclamation mark (!), as in this
example:

 !R() { Console::WriteLine("R finalizer"); }

Try an experiment with the code in Listing 6-15 to see when the destructor and finalizer
get called.

Hogenson_705-2C06.fm Page 161 Thursday, October 19, 2006 7:59 AM

162 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

Listing 6-15. Using a Destructor and Finalizer

// finalizer.cpp
using namespace System;

ref class R
{
 int ID;

 public:

 R(int id) : ID(id) { Console::WriteLine("R constructor {0}", ID); }
 ~R() { Console::WriteLine("R destructor {0}", ID); }
 !R() { Console::WriteLine("R finalizer {0}", ID); }
};

void MakeObjects()
{
 R^ r;
 R r1(0);
 for (int i = 1; i < 7; i++)
 {
 r = gcnew R(i);
 }
}

int main()
{
 MakeObjects();
 // Normally, you should avoid calling GC::Collect and forcing garbage
 // collection rather than letting the garbage collection thread determine
 // the best time to collect; I do it here to illustrate a point.
 GC::Collect();
}

Here is the output of Listing 6-15:

R constructor 0
R constructor 1
R constructor 2
R constructor 3
R constructor 4
R constructor 5
R constructor 6
R destructor 0
R finalizer 5
R finalizer 6

Hogenson_705-2C06.fm Page 162 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 163

R finalizer 4
R finalizer 3
R finalizer 2
R finalizer 1

You’ll notice that the destructor only got called once, and the finalizer got called six times.
The destructor was for the object created in MakeObjects with stack semantics when the object
went out of scope. The destructor is not called for a handle type that is not explicitly deleted.
The finalizer was called when the garbage collection ran (which in this case was forced by calling
GC::Collect). If you have a finalizer that does something important, you’ll want your destructor to
call your finalizer to make sure that the cleanup operations occur promptly rather than waiting
until a garbage collection cycle occurs. A destructor call suppresses the finalizer. Now try removing
the call to GC::Collect and rerunning the program. The finalizer is still called six times even
though the process may have shut down. Finalizers will be run when the process ends.

Finalizers are not to be used routinely; in fact, if you can avoid them, you should. A possible
use is for the last-ditch cleanup of unmanaged resources in cases where you can’t be sure whether
the destructor is called. Examples of unmanaged resources are native file handles, device contexts,
and so on. However, the .NET Framework provides wrapper classes for most of these unman-
aged resources, for example, the HWnd class and the SafeHandle family of classes. When using the
wrapper classes, the wrapper classes will take care of their own cleanup. Finalizers are particularly
difficult to write correctly, because when they execute, their members may be disposed, in the
process of finalization, or already finalized themselves. Also, to be truly robust, they need to
correctly handle various rare circumstances, such as being called more than once. When the
runtime invokes a finalizer, other threads are locked out automatically, so there is no need to
acquire a lock within the finalizer itself.

If a finalizer is implemented, you should have a destructor, and you should recommend
that users of your class call that destructor, because it is very inefficient to rely on finalization
to perform the cleanup operations.

The basic pattern is shown in Listing 6-16.

Listing 6-16. Pattern for Using a Destructor and Finalizer

// destructor_and_finalizer.cpp

ref class ManagedResource
{
 public:
 void Free() { /* free resource */ }
};

class NativeResource
{
 public:
 void Free() { /* free resource */ }
};

Hogenson_705-2C06.fm Page 163 Thursday, October 19, 2006 7:59 AM

164 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

ref class R
{
 ManagedResource^ resource1;
 NativeResource* nativeResource;

 public:
 ~R()
 {
 // You may clean up managed resources that you want to free up promptly
 // here. If you don't, they WILL eventually get cleaned up by the garbage
 // collector.
 // If the destructor is NOT called, the GC will eventually clean
 // them up.
 resource1->Free();
 this->!R();
 }
 !R()
 {
 // Clean up unmanaged resources that the
 // garbage collector doesn't know how to clean up.
 // That code shouldn't be in the destructor because
 // the destructor might not get called.
 nativeResource->Free();
 }
};

You might guess from what I’ve just said about the destructor suppressing the finalizer
that the finalizer doesn’t get called directly for objects created with stack semantics. When
objects with stack semantics are destroyed at the end of a function scope, the destructor is
called, but not the finalizer.

Code that frees the resources should be written in the finalizer, and the destructor should
call the finalizer. That way, you know your cleanup will be called regardless of whether the
destructor is called or not. If it is called, the cleanup executes because the destructor calls the
finalizer, and the finalizer cleans up. If it is not called, the finalizer eventually is called by the
garbage collector or application shutdown process, that is, when the application domain (the
CLR term for the entire space that all the application’s names exist in) shuts down.

In Listing 6-17, one file is opened using a native file handle, an unmanaged resource.
Another file is opened using the StreamWriter class.

Listing 6-17. Handling Managed and Unmanaged Resources

// file_converter.cpp
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <vcclr.h> // for PtrToStringChars

Hogenson_705-2C06.fm Page 164 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 165

using namespace System;
using namespace System::IO;

// a native class

class FileNative
{
 // a CRT file pointer
 FILE* fp;

 public:

 void Open(const char* filename)
 {
 int err = fopen_s(&fp, filename, "r");
 if (err)
 {
 printf("Error opening file %s. Error code %d.\n", filename, err);
 }
 }

 int Read(char* line)
 {
 int val = fread(line, 1, 1, fp);
 if (feof(fp))
 {
 return 0;
 }
 return val;
 }

 void Close()
 {
 if (fp)
 fclose(fp);
 }
};

// a managed class that contains a managed resource (StreamWriter)
// and a native resource (fileNative, a native class containing a native file)
ref class FileConverter
{
 FileNative* fileNative;
 StreamWriter^ sw;

 public:

Hogenson_705-2C06.fm Page 165 Thursday, October 19, 2006 7:59 AM

166 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 FileConverter(String^ source_file)
 {
 fileNative = new FileNative();
 pin_ptr<const wchar_t> wfilename = PtrToStringChars(source_file);
 size_t convertedChars = 0;
 size_t sizeInBytes = ((source_file->Length + 1) * 2);
 errno_t err = 0;
 char *filename = (char *)malloc(sizeInBytes);

 err = wcstombs_s(&convertedChars,
 filename, sizeInBytes,
 wfilename, sizeInBytes);
 if (err != 0)
 printf_s("wcstombs_s failed!\n");

 fileNative->Open(filename);
 }

 void Convert(String^ dest_file)
 {
 String^ text;
 char ptr[1024];
 int len;
 try
 {
 sw = gcnew StreamWriter(dest_file);
 }
 catch(Exception^ e)
 {
 Console::WriteLine("Error occurred. {0}", e->Message);
 }
 while ((len = fileNative->Read(ptr)) != 0)
 {
 // This version of the string constructor takes
 // a char* pointer, an offset, and a number of characters
 // to create the String from a portion of a character array.
 text = gcnew String(ptr, 0, len);
 Console::Write(text);
 sw->Write(text);
 }
 }

Hogenson_705-2C06.fm Page 166 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 167

 // A way to close the files promptly without waiting
 // for the cleanup to occur.
 void Close()
 {
 if (sw != nullptr)
 sw->Close();
 fileNative->Close();
 }

 // Destructor: close the managed filestream, and call finalizer.
 ~FileConverter()
 {
 if (sw != nullptr)
 sw->Close();
 this->!FileConverter();
 }

 // Finalizer: close the native file handle.
 !FileConverter()
 {
 fileNative->Close();
 }

};

int main(array<String^> ^ args)
{
 if (args->Length < 2)
 {
 Console::WriteLine("Usage: file_converter <sourcefile> <destfile>");
 return -1;
 }

 // Try both true and false values.
 bool stack_semantics = true;

 if (stack_semantics)
 {
 // Converter is created with stack semantics, so the destructor
 // (and finalizer) get called when main exits.
 FileConverter converter(args[0]);
 converter.Convert(args[1]);
 }

Hogenson_705-2C06.fm Page 167 Thursday, October 19, 2006 7:59 AM

168 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

 else
 {
 // Converter used with heap semantics. Destructor is not called,
 // so the file must be closed by calling the Close method. It will not
 // work to close the file from the finalizer, since the StreamWriter
 // object may be in an invalid state.
 FileConverter^ converter = gcnew FileConverter(args[0]);
 converter->Convert(args[1]);
 converter->Close(); // or: delete converter;
 }
}

Pitfalls of Finalizers
You should be aware that in a finalizer, your object could be partially destroyed already. Any
managed objects that are also on the heap may already be destroyed, because the garbage
collector may have cleaned them up already. The finalizer code should not assume that any
managed objects are still valid. Let’s say you wanted to avoid having to call Close when using
heap semantics, as in Listing 6-17, and you decide to move the closing of the stream to the
finalizer, as in Listing 6-18.

Listing 6-18. Closing a Stream in a Finalizer

 !FileConverter()
 {
 if (sw != nullptr)
 sw->Close(); // problem here
 fileNative->Close();
 }

The problem is that the underlying stream object may be released already by the garbage
collection process and an exception will be thrown. This will likely crash the process. In general,
objects of reference type may be in an invalid state in the finalizer. Objects of value type are
safe to use, as are unmanaged objects that have not been cleaned up yet.

I’ve noticed that many people who are trying to learn C++/CLI destruction and finaliza-
tion, who don’t yet fully understand the details of how destruction and finalization work, find
themselves unable to remember whether the destructor should call the finalizer, or vice versa.
The key to remembering this pattern is to remember that finalizer code is very limited. You
cannot access managed objects in your finalizer. There is no such restriction in the destructor.
So, it will not be possible for the finalizer to call the destructor if the destructor works with freeing
the managed resources, because that would put the destructor code under the same restric-
tions as the finalizer code, which would probably prevent some cleanup from being possible.

Let’s look at one more example, Listing 6-19, that should make clear the dangers of finalizers.

Hogenson_705-2C06.fm Page 168 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 169

Listing 6-19. A Dangerous Finalizer

// finalizer_pitfalls.cpp
#using "System.dll"
#using "System.Data.dll"

using namespace System;
using namespace System::Data::SqlClient;

ref class DataConnection
{
 SqlConnection^ conn;

 public:

 DataConnection()
 {
 conn = gcnew SqlConnection(
 "Server=(local);Uid=sa;Pwd=****;Initial Catalog=master");
 conn->Open();
 }

 // ... more code ...

 ~DataConnection()
 {
 this->!DataConnection();
 }

 !DataConnection()
 {
 try {
 Console::WriteLine("Closing connection...");
 conn->Close();
 }
 catch(Exception^ e)
 {
 Console::WriteLine("Error occurred! " + e->Message);
 }
 }

};

Hogenson_705-2C06.fm Page 169 Thursday, October 19, 2006 7:59 AM

170 C H A P T E R 6 ■ C L A S S E S A N D S T R U C T S

void UseData()
{
 DataConnection connection1;
 DataConnection^ connection2 = gcnew DataConnection();
 // Use the connection.

}

int main()
{
 UseData();
 // Force a garbage collection, to illustrate a point.
 GC::Collect();
}

Here, we create two connection objects, this time using a SqlConnection. One connection
is declared in the function UseData with stack semantics; the other is created with heap semantics.
When the UseData function exits, the destructor gets called for connection1, but not for
connection2, which becomes an orphaned object. Then, when a garbage collection occurs (in
this case artificially forced by the call to GC::Collect, but in principle this could happen at
some point in real-world code), an exception is generated. In this case the error reported is

Error occurred! Internal .Net Framework Data Provider error 1.

More often, you won’t have caught the exception, and the process will simply crash. The
question is, What went wrong? These errors can be extremely hard to diagnose until you realize
what is happening. The problem here is that you cannot rely on managed objects to remain in
existence when called from the finalizer. On the other hand, it is safe to reference these objects
from the destructor because when the destructor runs, the object and all its members are still
fully intact. In this case, you should move the data connection close operation into the
destructor, and be sure to call delete or use stack semantics to force the destructor call and the
closure of the connection.

The bottom line is that you can’t ignore calling delete for classes that hold onto resources.
If this seems disappointing, just remember that the managed environment may be very good
at cleaning up memory, but it is not designed to provide the same automatic cleanup for other
resources, which are best handled by matching every gcnew for a class with a destructor with a
corresponding delete, or, better, using stack semantics.

Hogenson_705-2C06.fm Page 170 Thursday, October 19, 2006 7:59 AM

C H A P T E R 6 ■ C L A SS E S A N D S T R U CT S 171

Summary
In this chapter, you looked at C++/CLI reference and value classes (and structs) and how they
differ from native classes. You looked at class initialization and literal and initonly members.
You saw how to implement an example of a complete class—the Scrabble game. You also learned
how to use the this pointer in reference and value types and the way to control access to types
in an assembly. You saw how to hold a pointer to a native type in a managed class, and vice
versa, and finally, you learned about object cleanup, including destructors and finalizers.

In the next chapter, you’ll look closely at members of .NET classes, in particular, properties,
operators, and events.

Hogenson_705-2C06.fm Page 171 Thursday, October 19, 2006 7:59 AM

Hogenson_705-2C06.fm Page 172 Thursday, October 19, 2006 7:59 AM

173

■ ■ ■

C H A P T E R 7

Features of a .NET Class

You’ve been using properties throughout the text, and you looked at an example of an event
in Chapter 2. This chapter will go into a bit more detail on properties and events, and will also
discuss some features of operators unique to C++/CLI, including static operators and how conver-
sion operators work in C++/CLI versus classic C++. You’ll also learn about casts and conversions.

Properties
As you saw in Chapter 2, in terms of object-oriented programming, properties capture the
“has-a” relationship for an object. Properties seem a lot like fields to the consumer of a class.
They represent values that can be retrieved and/or written to. You can use them inside the
class as well as outside the class (if they are public). There is a special syntax for using them that
makes them look like fields, but operations on these “fields” invoke the accessor (get and set)
methods that you’ve defined. Properties fully encapsulate the underlying data, whether it’s a
single field or something more complex, meaning that you are free to change the underlying
field’s representation without affecting the users of the class. Say we want to declare some
typical properties we might find in a periodic table of the elements. Listing 7-1 shows how.

Listing 7-1. Declaring Properties

// declaring_properties.cpp
using namespace System;

value class ElementType
{
 public:
 property unsigned int AtomicNumber;
 property double AtomicWeight;
 property String^ Name;
 property String^ Symbol;
};

Hogenson_705-2C07.fm Page 173 Wednesday, October 18, 2006 4:50 PM

174 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

int main()
{
 ElementType oxygen;
 oxygen.AtomicNumber = 8;
 oxygen.AtomicWeight = 15.9994;
 oxygen.Name = "Oxygen";
 oxygen.Symbol = "O";

 Console::WriteLine("Element: {0} Symbol: {1}", oxygen.Name, oxygen.Symbol);
 Console::WriteLine("Atomic Number: {0} Atomic Weight: {1}",
 oxygen.AtomicNumber, oxygen.AtomicWeight);
}

The output of Listing 7-1 is as follows:

Element: Oxygen Symbol: O
Atomic Number: 8 Atomic Weight: 15.9994

As you can see, the property is invoked by using its name in a member access expression.
You do not call get and set explicitly; they are called for you whenever code specifies a construct
that either retrieves the value (for example, using the property in an expression or as a function
parameter) or sets the value (when the property is used as an lvalue).

Expressions involving properties may not be chained. That is to say, a property cannot be
an lvalue and an rvalue at the same time. So, code like this does not work:

a = oxygen.AtomicNumber = 8; // error

In this example, we use the shorthand syntax for declaring properties that map directly
onto a field and have trivial get and set methods. A field is created automatically for such a
property, as well as the default get and set methods. Such a field is not intended to be accessed
in any way other than through the property. If you use this syntax, you can change it later to the
full form of the syntax (for example, to provide an alternative implementation of the property’s
underlying data, or add some custom code to the get and set methods) without changing the
property’s interface to outside users of the type. In Listing 7-2, we change the AtomicWeight
property from a simple double value to a computed value based on the isotopic abundances
and number of isotopes. Once the value is computed, the stored result is used. The set method
just sets the value as usual, and would perhaps be used if looking up the information from a
periodic table.

Listing 7-2. Computing a Property Value

// periodic_table.cpp
using namespace System;
using namespace System::Collections::Generic;

Hogenson_705-2C07.fm Page 174 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 175

value class Isotope
{
 public:
 property double Mass;
 property unsigned int AtomicNumber;
};

value class ElementType
{
 List<Isotope>^ isotopes;
 List<double>^ isotope_abundance;
 double atomicWeight;

 public:
 property unsigned int AtomicNumber;
 property String^ Name;
 property String^ Symbol;

 property double AtomicWeight
 {
 double get()
 {
 // Check to see if atomic weight has been calculated yet.
 if (atomicWeight == 0.0)
 {
 if (isotopes->Count == 0)
 return 0.0;
 for (int i = 0; i < isotopes->Count; i++)
 {
 atomicWeight += isotopes[i].Mass * isotope_abundance[i];
 }
 }
 return atomicWeight;
 }
 void set(double value)
 {
 // used if you look up atomic weight instead of calculating it
 atomicWeight = value;
 }
 }

 // other properties same as before
};

You can see how creating a trivial property isn’t like exposing a field directly to users of
a class. If you expose a field directly, you run into problems later if the implementation of the
field changes. With a trivial property, you can always later define the get and set methods
yourself and change the backing store for the property to suit your needs, while preserving the

Hogenson_705-2C07.fm Page 175 Wednesday, October 18, 2006 4:50 PM

176 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

interface the property presents to other consumers. When defining get and set explicitly, the
set method must return void and the get method must return the type of the property. The
parameter list for get must be void and the parameter list for set must be the type of the property.

Properties need not map onto a field’s value. For example, you could eliminate the
atomicWeight field from the class and simply compute the value whenever get is called. The set
method would then have to be eliminated. This is fine, though, since if only a get method is
defined, the property can be retrieved but not set.

As these methods get more complicated, you’ll want to move them out of the class decla-
ration. When defining property get and set methods out of the body of the class, use the class
name and property name as qualifiers, as in Listing 7-3.

Listing 7-3. Defining Property Accessors Outside of a Class

value class ElementType
{
 public:

 property double AtomicWeight
 {
 double get();
 }
};

double ElementType::AtomicWeight::get()
{
 // same implementation as before
}

In fact, this notation is how the property accessor is referred to when you need to refer
to the method name, such as when you assign a delegate to a get or set method; you use the
name of the property in the qualified name, as shown in Listing 7-4.

Listing 7-4. Using a Delegate with a Property Accessor

// property_accessor_delegate.cpp
using namespace System;

delegate double ValueAccessor();

value class ElementType
{
 public:
 property double AtomicWeight;
};

Hogenson_705-2C07.fm Page 176 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 177

int main()
{
 ElementType oxygen;
 oxygen.AtomicWeight = 15.9994;
 ValueAccessor^ get_method = gcnew ValueAccessor(oxygen,
 &ElementType::AtomicWeight::get);

 Console::WriteLine("{0}", get_method->Invoke());
}

Say we’d like to also have some static properties in our Element class. In fact, we’d like to
make a periodic table class with a static array property. There is nothing special about a static
property; all the rules for static methods and fields apply. Static properties are intended to be
used for properties of a type, not properties of a particular instance. Listing 7-5 is a first attempt
at this.

Listing 7-5. Trying to Define a Static Property

// property_static.cpp
value class ElementType
{
 public:

 // Periodic Table of the Elements
 static property array<ElementType>^ PeriodicTable;

 static ElementType()
 {
 PeriodicTable = gcnew array<ElementType>(120);
 // Initialize each element and its properties.
 }
};

That’s great, but if we later want to change the implementation from an array to a List or
Hashtable, we might need to rewrite the code that uses the property. A better way to implement
collection-like properties is to use vector properties, also called indexed properties.

Using Indexed Properties
A special type of property is allowed in C++/CLI that enables properties to act like arrays. You
can also use indexed properties to provide array indexing on objects, the equivalent of defining
the array indirection operator (operator[]) for your type.

To make a property support the indexing syntax, use the square brackets in the property
declaration. Inside the square brackets, put the type you will use as the index. You can index on
any type. Listing 7-6 shows a simple indexed property named ordinal. Note the type of the
index appears inside square brackets, and the index is used as the first parameter of both the
get and set methods.

Hogenson_705-2C07.fm Page 177 Wednesday, October 18, 2006 4:50 PM

178 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

Listing 7-6. Using an Indexed Property

// properties_indexed1.cpp
using namespace System;

ref class Numbers
{
 array<String^>^ ordinals;

 public:

 Numbers()
 {
 ordinals = gcnew array<String^> { "zero", "one", "two", "three" };
 }

 property String^ ordinal[unsigned int]
 {
 String^ get(unsigned int index)
 {
 return ordinals[index];
 }
 void set(unsigned int index, String^ value)
 {
 ordinals[index] = value;
 }
 }
};

int main()
{
 Numbers^ nums = gcnew Numbers();

 // Access the property values using the indexer
 // with an unsigned int as the index.
 Console::WriteLine(nums->ordinal[0]);
}

Here is the output of Listing 7-6:

zero

You can also define a default indexed property by naming the property default, which
enables the index to be used directly on the instance of the object (see Listing 7-7). Whether
you are accessing a default indexed property using a handle or a variable declared with stack
semantics, you can use the array indirection operator directly.

Hogenson_705-2C07.fm Page 178 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 179

Listing 7-7. Using a Default Property

// properties_indexed2.cpp
using namespace System;

ref class Numbers
{
 array<String^>^ ordinals;

 public:

 Numbers()
 {
 ordinals = gcnew array<String^> { "zero", "one", "two", "three" };
 }

 property String^ default[unsigned int]
 {
 String^ get(unsigned int index)
 {
 return ordinals[index];
 }
 void set(unsigned int index, String^ value)
 {
 ordinals[index] = value;
 }
 }
};

int main()
{
 Numbers nums;

 // Access property using array indexing operators on the
 // instance directly.
 Console::WriteLine(nums[0]);

 // If using a handle, you can still use array syntax.
 Numbers^ nums2 = gcnew Numbers();
 Console::WriteLine(nums2[1]);

 // You can also use the name "default" and access like a
 // named property.

 Console::WriteLine(nums.default[2]);
 Console::WriteLine(nums2->default[3]);
}

Hogenson_705-2C07.fm Page 179 Wednesday, October 18, 2006 4:50 PM

180 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

The output of Listing 7-7 is as follows:

zero
one
two
three

Listing 7-8 shows a class with an indexed property whose backing store is a collection class.
The indexed property on the class PeriodicTable invokes the default indexed property on a .NET
Framework collection class, Hashtable (here accessed through the interface IDictionary). The
ElementType class now overrides the ToString method on Object to allow custom output.
Chapter 8 discusses the override keyword.

Listing 7-8. Backing a Property with a Collection

// periodic_table.cpp
using namespace System;
using namespace System::Collections;

value class ElementType
{
 public:
 property unsigned int AtomicNumber;
 property double AtomicWeight;
 property String^ Name;
 property String^ Symbol;

 // You cannot use initializer list syntax to initialize properties.
 ElementType(String^ name, String^ symbol,
 double a, double n)
 {
 AtomicNumber = n;
 AtomicWeight = a;
 Name = name;
 Symbol = symbol;
 }

 // Override the ToString method (you'll learn more about the override
 // keyword in the next chapter).
 virtual String^ ToString() override
 {
 return String::Format(
 "Element {0} Symbol {1} Atomic Number {2} Atomic Weight {3}",
 Name, Symbol, AtomicNumber, AtomicWeight);
 }
};

Hogenson_705-2C07.fm Page 180 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 181

ref class PeriodicTable
{
 private:

 Hashtable^ table;

 public:

 PeriodicTable()
 {
 table = gcnew Hashtable();

 ElementType element("Hydrogen", "H", 1.0079, 1);

 // Add to the Hashtable using the key and value.
 table->Add(element.Name, element);

 // Add the other elements...
 }

 property ElementType default[String^]
 {
 ElementType get(String^ key)
 {
 return safe_cast<ElementType>(table[key]);
 }
 }
};

int main()
{
 PeriodicTable^ table = gcnew PeriodicTable();

 // Get the element using the indexed property and print it.
 Console::WriteLine(table["Hydrogen"]);
}

The output of Listing 7-8 is shown here:

Element Hydrogen Symbol H Atomic Number 1 Atomic Weight 1.0079

Now suppose we want to implement a table of the isotopes, as envisioned in Chapter 2.
Isotopes are different versions of the same element, so there is a many-to-one relationship
between isotopes and elements. Isotopes are distinguished by a number, the isotope number,
which is equal to the number of protons plus the number of neutrons. The number of protons
determines the type of element, and the different isotopes of an element just vary by the number

Hogenson_705-2C07.fm Page 181 Wednesday, October 18, 2006 4:50 PM

182 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

of neutrons. In Listing 7-9, a hashtable is used to store the various isotopes. The key is based on
the element type and the isotope number, which uniquely identifies the isotope. For example,
for carbon-14, the key is “C14”. Since you can have more than one index variable, separated by
commas, in an indexed property, we could look up an isotope by the name of the element and
the isotope number, as the ElementIsotope property in Listing 7-9 shows. The key is computed
by appending the element symbol and the isotope number, which are the arguments of the
indexed property.

Listing 7-9. Using Multiple Indexes

// isotope_table.cpp
using namespace System;
using namespace System::Collections::Generic;

value class Isotope
{
 public:
 property unsigned int IsotopeNumber;
 property unsigned int AtomicNumber;
};

ref class IsotopeTable
{
 private:

 Dictionary<String^, Isotope>^ isotopeTable;

 public:

 IsotopeTable()
 {
 isotopeTable = gcnew Dictionary<String^, Isotope>();

 // Add the elements and their isotopes...
 // Additional code for the elements is assumed.
 for each (ElementType element in PeriodicTable::Elements)
 {

 // Add each isotope to the isotopes table.
 for each (Isotope isotope in element.Isotopes)
 {
 isotopeTable->Add(element.Name + isotope.IsotopeNumber, isotope);
 }
 }
 }

Hogenson_705-2C07.fm Page 182 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 183

 // Pass in the element symbol and isotope number, e.g., "C" and 14 for
 // carbon-14.
 property Isotope ElementIsotope[String^, int]
 {
 Isotope get(String^ key, int isotopeNumber)
 {
 key = key + isotopeNumber.ToString();
 return isotopeTable[key];
 }
 }
};

For many of these examples, we omit the set accessor to make the property read-only. You
can do the opposite for a write-only property (see Listing 7-10). You can also use access control
to set individual access to the set and get methods. Recalling the Atom class from Chapter 2,
and the derived class RadioactiveAtom, it makes sense to use the access control specifier protected
to limit setting the AtomicNumber property to the class and its derived classes. That way the
radioactive atom can change the atomic number to process a decay event, but consumers of
the atom class can’t otherwise change the atomic number.

Listing 7-10. Defining a Write-Only Property

ref class Atom
{
 unsigned int atomic_number;

 public:
 property unsigned int IsotopeNumber;
 property unsigned int AtomicNumber
 {
 // Anyone can get the atomic number.
 public: unsigned int get()
 {
 return atomic_number;
 }
 // Only derived classes (such as RadioactiveAtom)
 // can change the atomic number.
 protected: void set(unsigned int n)
 {
 atomic_number = n;
 }
 }
};

ref class RadioactiveAtom : Atom
{
 // other stuff

Hogenson_705-2C07.fm Page 183 Wednesday, October 18, 2006 4:50 PM

184 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 public:

 void AlphaDecay()
 {
 AtomicNumber -= 2;
 IsotopeNumber -= 4;
 }
};

AlphaDecay is a function representing a decay of the atom, releasing two protons and two
neutrons in the form of an alpha particle. This changes the atomic number and isotope number,
which are updated. As you recall, the decay events in a radioactive atom were modeled using
delegates and events. The delegate or event was used to call the designated decay method. The
next section covers delegates and events in more detail.

Delegates and Events
Delegates can be viewed as the function pointers of the managed world. As a C++ programmer,
you probably often use typedef to hide some of the complexity of the syntax for declaring and
using function pointers. A delegate is an object that designates a function to call on a specific
object (if the function is an instance method) or class (if the function is a static method), or a
global function. The delegate is not the function itself; it simply represents the address of a
function to call, along with a specific object whose method is to be called, if applicable.

Delegates are strongly typed, in that the parameter types and return type are part of the
type of a delegate. A delegate variable may only be assigned to a function that matches the
delegate signature. Delegates may not be used to designate a family of overloaded functions.
They may only be used to designate specific function prototypes with specific arguments.

You saw in Chapter 2 how to declare and use a simple delegate. Delegates are actually
instances of the .NET Framework class System::MulticastDelegate. The name “multicast”
implies that many functions may be called when a delegate is invoked. This is, in fact, the case.
The delegate keeps an internal list of functions in an invocation list, and all the functions on
that list are invoked every time the Invoke method is called. You use the += operator to add
functions to the invocation list, and the -= operator to remove them. You can also use the ()
operator to call the Invoke method implicitly, as in Listing 7-11.

Listing 7-11. Using a Delegate

// delegate_operators.cpp

using namespace System;

delegate void MyDelegate();

ref class R
{
 public:

Hogenson_705-2C07.fm Page 184 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 185

 void f() { Console::WriteLine("R::f"); }
 void g() { Console::WriteLine("R::g"); }
};

int main()
{
 MyDelegate^ d;
 R^ r = gcnew R();

 d += gcnew MyDelegate(r, &R::f);
 d += gcnew MyDelegate(r, &R::g);

 d->Invoke();

 d -= gcnew MyDelegate(r, &R::g);

 // Use operator() instead of calling Invoke.
 d();
}

The output of Listing 7-11 is as follows:

R::f
R::g
R::f

Don’t worry that when you use the -= operator, you are passing a newly created delegate
to the -= operator. This seems counterintuitive, since you’re actually deleting something, not
creating it anew. The -= operator compares the invocation list of the right-side delegate to the
invocation list of the delegate from which you are removing it, and removes the matching function
(or functions) from the list.

Let’s say the functions we’re invoking have return values.

delegate String^ MyDelegate();

You’ll find that the line

d += gcnew MyDelegate(r, &R::f);

triggers a compiler warning:

warning C4358: '+=': return type of combined delegates is not 'void';
 returned value is undefined

The issue is that if there are multiple functions called, each of which returns a different
value, how do we know which function’s return value gets returned from the delegate? And
what happens to the return values for the others? In the CLR, the actual return value is the

Hogenson_705-2C07.fm Page 185 Wednesday, October 18, 2006 4:50 PM

186 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

return value of the last delegate called. However, it would not be wise to rely on which function
is the last one called, as this is implementation dependent. The Invoke function is too simplistic
to deal with this situation. What we need to do is get the invocation list and walk through it,
calling each target function and examining the return value separately, as in Listing 7-12. In
order to avoid the warning, we can use the Combine and Remove methods instead of the operators.

Listing 7-12. Walking Through an Invocation List

// delegate_invocation_list.cpp
using namespace System;

delegate String^ MyDelegate();

ref class R
{
 public:

 String^ f() { return "R::f"; }
 String^ g() { return "R::g"; }
 String^ h() { return "R::h"; }
};

int main()
{
 MyDelegate^ d;
 R^ r = gcnew R();

 d = gcnew MyDelegate(r, &R::f);
 // Cast the return value to this particular delegate type.
 // Note: the C-style cast evaluates to a safe_cast.
 d = (MyDelegate^) d->Combine(d, gcnew MyDelegate(r, &R::g));
 d = (MyDelegate^) d->Combine(d, gcnew MyDelegate(r, &R::h));

 String^ s = d->Invoke();
 Console::WriteLine("Return value was {0}", s);

 d = (MyDelegate^) d->Remove(d, gcnew MyDelegate(r, &R::g));

 s = d->Invoke();
 Console::WriteLine("Return value was {0}", s);

 for each (MyDelegate^ del in d->GetInvocationList())
 {
 s = del->Invoke();
 Console::WriteLine("Return value was {0}", s);
 }

}

Hogenson_705-2C07.fm Page 186 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 187

Here is the output for Listing 7-12:

Return value was R::h
Return value was R::h
Return value was R::f
Return value was R::h

The output shows us that, in reality, the last function added is the one whose value is
returned. But since this is implementation-defined, we should heed the warning and always
use a manual walk of the invocation list with these delegates.

Using GetInvocationList is also useful if exceptions might be thrown by the functions
called through the delegate. If one delegate function throws an exception, other target functions
may never execute. Walking through the invocation list manually enables you to wrap each
invocation in a try/catch block, giving you more control over the functions that are invoked.
Listing 7-13 demonstrates this technique.

Listing 7-13. Manually Walking Through an Invocation List

// delegate_with_exceptions.cpp
using namespace System;

delegate String^ MyDelegate();

ref class R
{
 public:

 String^ f() { throw gcnew Exception(); return "R::f"; }
 String^ g() { return "R::g"; }
 String^ h() { return "R::h"; }
};

int main()
{
 MyDelegate^ d;
 R^ r = gcnew R();

 d = gcnew MyDelegate(r, &R::f);
 d = safe_cast<MyDelegate^>(d->Combine(d, gcnew MyDelegate(r, &R::g)));
 d = safe_cast<MyDelegate^>(d->Combine(d, gcnew MyDelegate(r, &R::h)));

 for each (MyDelegate^ del in d->GetInvocationList())
 {

Hogenson_705-2C07.fm Page 187 Wednesday, October 18, 2006 4:50 PM

188 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 try
 {
 String^ s = del->Invoke();
 Console::WriteLine("Return value was {0}", s);
 }
 catch(Exception^)
 {
 // Handle the exception.
 }
 }

}

The output of Listing 7-13 is shown here:

Return value was R::g
Return value was R::h

Without the try/catch, g and h would never have been called.

Asynchronous Delegates
If the function you are calling via a delegate takes a long time to execute, you may want your
code to perform other work while the called function is executing asynchronously on another
thread. The .NET Framework provides support for calling delegates asynchronously, using a
worker thread to call the function indicated by the delegate and allowing the initiating thread
to continue with other work. Instead of using the Invoke method, use the BeginInvoke method
to initiate the function call, and later in your code, call EndInvoke to retrieve the result. A variety
of design patterns may be used. If you simply have a few other tasks to complete, you can perform
those tasks and then simply wait for the result by calling EndInvoke. When EndInvoke is called
before the worker thread has completed its work, execution on the main thread will block
waiting for the function to complete. You can also poll the secondary thread, enabling you to
continue working and keep checking the secondary thread until it’s done. Another design
pattern allows you to set up a callback function that is called when the function called by the
delegate completes.

The BeginInvoke has a signature that is determined by the delegate declaration. BeginInvoke
has the same parameters as the usual Invoke function, plus two additional parameters: the first
is an AsyncCallback class and the second is the delegate. EndInvoke has only one parameter of
type IAsyncResult. So, for example if you have a delegate like this one:

delegate void MyDelegate(R^ r);

the invoke methods have the following signatures:

AsyncResult^ BeginInvoke(R^, AsyncCallback^, MyDelegate^);
void EndInvoke(IAsyncResult^);

Hogenson_705-2C07.fm Page 188 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 189

The classes AsyncCallback and AsyncResult and the associated interface IAsyncResult
provide the methods needed to implement these designs, such as providing a way to check
on whether the function has completed. The BeginInvoke function returns an object of type
AsyncResult. Listing 7-14 shows an example.

Listing 7-14. Checking Function Completion

// async_delegates.cpp

using namespace System;
using namespace System::Threading;

ref class R
{
public:
 property String^ Value;

 R(String^ s) { Value = s; }
};

delegate void QueryFunc(String^, R^);

ref class Document
{

 IAsyncResult^ result;
 R^ m_r;

 public:

 Document(String^ s) { m_r = gcnew R(s); }

 // Query the database.
 void Query(String^ queryString, R^ r)
 {
 // Execute a long query.
 r->Value = "New Value";
 }

 void InitiateQuery(String^ queryString)
 {
 QueryFunc^ qf = gcnew QueryFunc(this, &Document::Query);
 Console::WriteLine(m_r->Value);
 result = qf->BeginInvoke(queryString, m_r,
 gcnew AsyncCallback(this, &Document::ProcessResult),
 qf);
 }

Hogenson_705-2C07.fm Page 189 Wednesday, October 18, 2006 4:50 PM

190 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 bool IsQueryCompleted()
 {
 return result->IsCompleted;
 }

 // This function gets called when the asynchronous call
 // completes.
 void ProcessResult(IAsyncResult^ result)
 {
 // Retrieve the delegate.
 QueryFunc^ caller = (QueryFunc^) result->AsyncState;

 // Get the data back (fill in DataSet parameter).
 caller->EndInvoke(result);
 Console::WriteLine(m_r->Value);
 }

 void UseData()
 {
 // Do something...
 }

};

int main()
{
 Document doc("Old Value");
 doc.InitiateQuery("SELECT * FROM Plants WHERE Plant.Genus = 'Lycopersicon'");
 // Do other work while the query executes.

 // Poll for completion.
 while (! doc.IsQueryCompleted())
 {
 Thread::Sleep(100);
 }

 // Do work with the data.

 doc.UseData();

}

Here is the output of Listing 7-14:

Old Value
New Value

Hogenson_705-2C07.fm Page 190 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 191

Events
Event-driven programming is common in applications that use graphical user interfaces,
including Windows and web applications. User actions such as clicking a button cause events
to be raised within the program, and code can be written to respond to those events. Events
can also be raised by other programs or by the operating system. Within C++/CLI there are a
number of abstractions that help implement event-driven programming. C++/CLI events are
defined as members of a managed type. Events in C++/CLI must be defined as members of a
managed type. The idea of defining an event in a class is to associate a method that is to be
called (or multiple methods that are to be called) when those events are raised. On a practical
level, events are fired by calling a specific method, although those who are interested in handling
the event often do not see the code that raises the event. At that point any event handlers that
have been attached to that event are called to respond to the event.

If you’re going to write event-driven GUI applications, events are a mainstay since every
time a mouse moves or the user hits the keyboard, an event occurs—even if your application
does not handle it. If you use Microsoft Foundation Classes (MFC), you know about the message
map. Events in C++/CLI are a language feature that builds into the language the idea of a mapping
between events and functions that handle those events. The context-sensitive keyword event
is used to declare an event in a managed type. Like properties, there is a simple form and a
more complex form of the declaration. You saw the simple form in Chapter 2. As a reminder,
the simple form of the declaration looks like this:

event EventHandler^ anEvent;

Like the more complex form of the property declaration, the more complex form of the
event declaration lets you define your own methods for adding and removing event handlers,
and raising events (see Listing 7-15). The arguments to add and remove must match the event’s
declared type.

Listing 7-15. Customizing Methods for an Event Handler

event EventHandler^ Start
{
 void add(EventHandler^ handler)
 { /* code to add an eventhandler to the invocation list */ }
 void remove(EventHandler^ handler)
 { /* code to remove an eventhandler from the invocation list */ }
 void raise(Object^ sender, EventArgs^ args)
 { /* code to fire the event */ }
}

Let’s look at Listing 7-16. In this code, we create a managed class called Events that
declares two events, Start and Exit. The type EventHandler, defined in the .NET Framework
System namespace, is used. There are many types derived from EventHandler that could also be
used. In fact, any delegate type could be used. Both events may be fired by calling a method on
the class, RaiseStartEvent or RaiseExitEvent, which in turn invoke the event by simply using
the name of the event as if it were a function call with the appropriate arguments. The appro-
priate arguments are determined by the delegate type that is used as the type of the event, in
this case System::EventHandler, which takes an Object and the System::EventArgs parameter.

Hogenson_705-2C07.fm Page 191 Wednesday, October 18, 2006 4:50 PM

192 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

Listing 7-16. Declaring an Event and Event Handlers

// events.cpp
using namespace System;
using namespace System::Threading;

ref class Events
{
 public:
 event EventHandler^ Start;

 event EventHandler^ Exit;

 // Function calls to raise the events from outside the class.
 void RaiseStartEvent()
 {
 Start(this, gcnew EventArgs());
 }

 void RaiseExitEvent()
 {
 Exit(this, gcnew EventArgs());
 }

 // event handler for Start event
 void OnStart(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine("Starting");
 }

 // event handler for Exit event
 void OnExit(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine("Exiting");
 }
};

void f(Events^ e)
{
 // Raise event for starting this function.
 e->RaiseStartEvent();

 Console::WriteLine("Doing something.");

 // Raise event for exiting this function.
 e->RaiseExitEvent();
}

Hogenson_705-2C07.fm Page 192 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 193

int main()
{

 Events^ events = gcnew Events();

 // Add the event handlers for Start and Exit.
 events->Start += gcnew EventHandler(events, &Events::OnStart);
 events->Exit += gcnew EventHandler(events, &Events::OnExit);

 f(events);

 // Remove the event handlers.
 events->Start -= gcnew EventHandler(events, &Events::OnStart);
 events->Exit -= gcnew EventHandler(events, &Events::OnExit);
}

This code works because, as for a trivial property, methods are automatically generated
by the compiler for adding and removing event handlers and raising events. In addition, an
underlying delegate is created. You can certainly go far with events simply using “trivial”
events, since often the add, remove, and raise methods are just what you need. However, if your
application requires special handling for adding or removing event handlers, or raising events,
you can go beyond these default methods and define your own. Listing 7-17 rewrites this to
define custom add, remove, and raise methods. In this case, we use the custom methods to
track what’s going on by writing to the console.

If you do write your own add and remove accessors, you should take care to ensure thread
safety. The default add and remove accessors lock on the containing object (the this pointer),
meaning that any other thread attempting to access these methods on the same object will
be locked out. You can use the lock template provided in the msclr namespace (#include
msclr\lock.h to access it) to accomplish this. Locking the add and remove accessors will prevent
corruption of the list that keeps track of the functions to be called when an event is fired. Locking
the raise method is not a good idea since the code you call from your event handler might lead
to an invocation of the event, which will lead to a deadlock.

Listing 7-17. Customizing add, remove, and raise

// events_custom.cpp
#include <msclr\lock.h>
using namespace System;
using namespace msclr;

ref class Events
{
 public:

 // underlying delegates to use for the events
 EventHandler^ _start, ^ _exit;

Hogenson_705-2C07.fm Page 193 Wednesday, October 18, 2006 4:50 PM

194 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 event EventHandler^ Start
 {
 // Use the += operator to add a function to the
 // (multicast) delegate.
 void add(EventHandler^ handler)
 {
 lock lockEvent(this);
 Console::WriteLine(" Adding Start event handler. ");
 _start += handler;
 }
 void remove(EventHandler^ handler)
 {
 lock lockEvent(this);
 Console::WriteLine(" Removing Start event handler. ");
 _start -= handler;
 }

 protected:

 // If the underlying delegate is non-null, invoke the
 // event with the given event arguments.
 void raise(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine(" Firing Start event. ");
 if (_start)
 _start->Invoke(sender, args);
 }
 }

 event EventHandler^ Exit
 {
 void add(EventHandler^ handler)
 {
 lock lockEvent(this);
 Console::WriteLine(" Adding Exit event handler. ");
 _exit += handler;
 }
 void remove(EventHandler^ handler)
 {
 lock lockEvent(this);
 Console::WriteLine(" Removing Exit event handler. ");
 _exit -= handler;
 }

Hogenson_705-2C07.fm Page 194 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 195

 void raise(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine(" Firing Exit event. ");
 if (_exit)
 _exit->Invoke(sender, args);
 }
 }

 // Function calls to raise the events from outside the class.
 void RaiseStartEvent()
 {
 Start(this, gcnew EventArgs());
 }

 void RaiseExitEvent()
 {
 Exit(this, gcnew EventArgs());
 }

 // event handler for Start event
 void OnStart(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine("Starting");
 }

 // event handler for Exit event
 void OnExit(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine("Exiting");
 }
};

void f(Events^ e)
{
 // Raise event for starting this function.
 e->RaiseStartEvent();

 Console::WriteLine("Doing something.");

 // Raise event for exiting this function.
 e->RaiseExitEvent();
}

int main()
{

Hogenson_705-2C07.fm Page 195 Wednesday, October 18, 2006 4:50 PM

196 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 Events^ events = gcnew Events();

 // Add the event handlers for Start and Exit.
 events->Start += gcnew EventHandler(events, &Events::OnStart);
 events->Exit += gcnew EventHandler(events, &Events::OnExit);

 f(events);

 // Remove the event handlers.
 events->Start -= gcnew EventHandler(events, &Events::OnStart);
 events->Exit -= gcnew EventHandler(events, &Events::OnExit);
}

The output of Listing 7-17 is as follows:

Adding Start event handler.
 Adding Exit event handler.
 Firing Start event.
Starting
Doing something.
 Firing Exit event.
Exiting
 Removing Start event handler.
 Removing Exit event handler.

The lock object will release its lock when it goes out of scope at the end of the method in
which it is used.

We have used the EventHandler and EventArgs classes provided by the framework, although
in fact any delegate may be used as the event type instead with this pattern. Listing 7-18 is an
example of using a delegate unrelated to the System::EventHandler class. You can see that much of
the earlier example applies, but the parameters to the event are determined by parameters of the
delegate type, EventProcessor. Differences are indicated in boldface.

Listing 7-18. Using a Delegate Unrelated to System::EventHandler

// events_custom2.cpp
#include <msclr\lock.h>
using namespace System;
using namespace msclr;

delegate void EventProcessor(String^ eventString);

ref class Events
{
 public:

Hogenson_705-2C07.fm Page 196 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 197

 // underlying delegates to use for the events
 EventProcessor^ _start, ^ _exit;

 event EventProcessor^ Start
 {
 void add(EventProcessor^ handler)
 {
 lock lockEvents(this);
 Console::WriteLine(" Adding Start event handler. ");
 _start += handler;
 }
 void remove(EventProcessor^ handler)
 {
 lock lockEvents(this);
 Console::WriteLine(" Removing Start event handler. ");
 _start -= handler;
 }

 protected:

 void raise(String^ eventString)
 {
 Console::WriteLine(" Firing Start event. ");
 if (_start)
 _start->Invoke(eventString);
 }
 }

 event EventProcessor^ Exit
 {
 void add(EventProcessor^ handler)
 {
 lock lockEvents(this);
 Console::WriteLine(" Adding Exit event handler. ");
 _exit += handler;
 }
 void remove(EventProcessor^ handler)
 {
 lock lockEvents(this);
 Console::WriteLine(" Removing Exit event handler. ");
 _exit -= handler;
 }

Hogenson_705-2C07.fm Page 197 Wednesday, October 18, 2006 4:50 PM

198 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 void raise(String^ eventString)
 {
 Console::WriteLine(" Firing Exit event. ");
 if (_exit)
 _exit->Invoke(eventString);
 }
 }

 // function calls to raise the events from outside the class
 void RaiseStartEvent(String^ eventString)
 {
 Start(eventString);
 }

 void RaiseExitEvent(String^ eventString)
 {
 Exit(eventString);
 }

 // event handler for Start event
 void OnStart(String^ eventString)
 {
 Console::WriteLine("Starting: " + eventString);
 }

 // event handler for Exit event
 void OnExit(String^ eventString)
 {
 Console::WriteLine("Exiting: " + eventString);
 }
};

void f(Events^ e)
{
 // Raise event for starting this function.
 e->RaiseStartEvent("Start event occurred!");

 Console::WriteLine("Doing something.");

 // Raise event for exiting this function.
 e->RaiseExitEvent("Exit event occurred.");
}

Hogenson_705-2C07.fm Page 198 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 199

int main()
{

 Events^ events = gcnew Events();

 // Add the event handlers for Start and Exit.
 events->Start += gcnew EventProcessor(events, &Events::OnStart);
 events->Exit += gcnew EventProcessor(events, &Events::OnExit);

 f(events);

 // Remove the event handlers.
 events->Start -= gcnew EventProcessor(events, &Events::OnStart);
 events->Exit -= gcnew EventProcessor(events, &Events::OnExit);
}

The output of Listing 7-18 is shown here:

Adding Start event handler.
 Adding Exit event handler.
 Firing Start event.
Starting: Start event occurred!
Doing something.
 Firing Exit event.
Exiting: Exit event occurred.
 Removing Start event handler.
 Removing Exit event handler.

The expressions for creating the delegates (the gcnew expressions in the main method)
remain the same, but the arguments for the custom delegate are used throughout instead of
the System::EventHandler arguments. However, the EventHandler class is quite general and,
since it includes an EventArgs parameter that is flexible enough for most uses, it is common to
use these classes provided by the framework.

Event Receivers and Senders
Events are often fired by a different object than the one that receives or handles the event.
A handle to the object involved in generating the event can be passed in. The design of the
EventHandler class reflects this, including the sender parameter.

Listing 7-19 is a simplification of the code in the previous listing, but it illustrates the more
common case of separate sender and receiver classes.

Hogenson_705-2C07.fm Page 199 Wednesday, October 18, 2006 4:50 PM

200 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

Listing 7-19. Using Separate Sender and Receiver Classes

// sender_receiver.cpp
using namespace System;

// This class generates an event.
ref class EventSender
{

 public:

 event EventHandler^ MyEvent;

 void Fire(EventArgs^ args)
 {
 // Raise event for starting this function.
 MyEvent(this, args);

 }
};

// This class will handle the event.
ref class EventReceiver
{
 public:

 // event handler for Start event
 void OnMyEvent(Object^ sender, EventArgs^ args)
 {
 Console::WriteLine("My Event");
 }

 void SetUpToReceive(EventSender^ sender)
 {
 // Add the event handler.
 sender->MyEvent += gcnew EventHandler(this, &EventReceiver::OnMyEvent);
 }

};

int main()
{
 EventReceiver^ receiver = gcnew EventReceiver();
 EventSender^ sender = gcnew EventSender();

Hogenson_705-2C07.fm Page 200 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 201

 // Configure the receiver to listen to events
 // from the specified sender.
 receiver->SetUpToReceive(sender);

 EventArgs^ args = gcnew EventArgs();
 sender->Fire(args);
}

Here is the output of Listing 7-19:

My Event

Using the EventArgs Class
The System::EventArgs class is itself not capable of passing custom event arguments. To define
events that do contain additional data, you need to define a class derived from EventArgs that
contains the required data. Listing 7-20 demonstrates how to use a class derived from EventArgs
to send data about an event that can be used in the event handler to customize the response.
You’ll want to create a new event handler delegate type to match the custom EventArgs type.

Listing 7-20. Providing Custom Event Data

// eventargs.cpp
using namespace System;

ref class MyEventArgs : EventArgs
{
 public:
 property String^ Info;

 MyEventArgs(String^ info)
 {
 Info = info;
 }
};

delegate void MyEventHandler(Object^ sender, MyEventArgs^ args);

// This class generates an event.
ref class EventSender
{

 public:

 event MyEventHandler^ MyEvent;

Hogenson_705-2C07.fm Page 201 Wednesday, October 18, 2006 4:50 PM

202 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 void Fire(MyEventArgs^ args)
 {
 // Raise event for starting this function.
 MyEvent(this, args);

 }
};

// This class will handle the event.
ref class EventReceiver
{
 public:

 // event handler for Start event
 void OnMyEvent(Object^ sender, MyEventArgs^ args)
 {
 Console::WriteLine("My Event with info: " + args->Info);
 }

 void SetUpToReceive(EventSender^ sender)
 {
 // Add the event handler.
 sender->MyEvent += gcnew MyEventHandler(this, &EventReceiver::OnMyEvent);
 }

};

int main()
{
 EventReceiver^ receiver = gcnew EventReceiver();
 EventSender^ sender = gcnew EventSender();

 // Configure the receiver to listen to events
 // from the specified sender.
 receiver->SetUpToReceive(sender);

 MyEventArgs^ myargs = gcnew MyEventArgs("abc");
 sender->Fire(myargs);
}

The output of Listing 7-20 is as follows:

My Event with info: abc

Hogenson_705-2C07.fm Page 202 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 203

Reserved Names
Whenever properties or events are declared in a class, certain methods get created that imple-
ment the properties and events. Thus, certain names become reserved in a class that has these
properties or events. In a class with a property named P, the names get_P and set_P are reserved,
and in a class with an event named E, add_E, remove_E, and raise_E are reserved. Also, get_Item
and set_Item are reserved since these are emitted to support default indexed properties.

Operator Overloading
The purpose of operator overloading is to implement types that behave like built-in types. The
basic rules for operator precedence and evaluation remain the same regardless of whether the
operators are used with primitive types (int, double, etc.) or user-defined types, so if you wanted to
define a new operator with its own precedence rules—such as an exponentiation operator—
you couldn’t do it. Unfortunately, C++/CLI adds to the long list of highly sophisticated languages
that suffer from the omission of the exponentiation operator, so until some enlightened language
designer chooses to change that, we have to concede to the FORTRAN fans that theirs is, after
all, the language designed better for the expression of mathematical formulas. I’m sorry, but
the pow function is as poor an alternative as the add function would be for the + operator. I can
only conclude that it’s obvious that there is a cultural gap between computer language designers
and computational scientists. OK, I’ll get off my soap box now. However, despite these limita-
tions, operator overloading is useful for many situations.

Static Operators
C++/CLI allows you to define static operators on a class. This avoids the need for some operators to
be global, such as addition between a class type and a primitive type. Usually, these functions
require access to the internals of a class, so the concept of friend functions and friend classes is
often used in C++ to allow external operator functions to access the internals of a type. To illus-
trate the problem, in C++ implement a class that allows addition as an integer. Perhaps it’s a
class called Complex (see Listing 7-21). To support the + operator with complex numbers and
ordinary doubles, you have to implement several global functions.

Listing 7-21. Defining a Class to Represent Complex Numbers

// complex.h
using namespace System;

class Complex
{
 double re;
 double im;

 public:

 Complex() : re(0.0), im(0.0) { }

Hogenson_705-2C07.fm Page 203 Wednesday, October 18, 2006 4:50 PM

204 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 Complex(double real, double imag) : re(real), im(imag) { }

 // Allow a complex number to be created from a double.
 Complex(double real) : re(real), im(0.0) { }

 Complex(const Complex& c)
 {
 this->re = c.re; this->im = c.im;
 }

 // assignment operator
 Complex& operator=(const Complex& c)
 {
 this->re = c.re; this->im = c.im;
 return *this;
 }

 // equality operator for comparing two complex numbers
 bool operator==(const Complex& c)
 {
 return (this->re == c.re && this->im == c.im);
 }

 // unary minus
 Complex operator-()
 {
 return Complex(-re, im);
 }

 // Add a complex number to a complex number.
 Complex operator+(const Complex& rhs)
 {
 return Complex(this->re + rhs.re, this->im + rhs.im);
 }
 // Add a complex number to a complex number.
 Complex operator+(double d)
 {
 return Complex(this->re + d, this->im);
 }
 // Add a double and a complex number.
 // This must be a global friend operator.
 friend Complex operator+(double d, Complex c)
 {
 return Complex(c.re + d, c.im);
 }

Hogenson_705-2C07.fm Page 204 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 205

 // ditto for ambition, distraction, uglification, and derision...

};

Notice the operator + declared as a friend, which is a global function, not actually a member
of the class. The friend operator is necessary if you want addition to be commutative (necessary for
any sensible system of operators). Consider the following expressions:

double d;
Complex c1, c2;
c2 = c1 + d; // Complex::operator+(double d) member function called
c2 = d + c1; // global friend operator+(double d, const Complex& c) called

It’s not possible for an instance method to be called on a class when the class is on the right
side of the expression.

In C++/CLI, the operators that in classic C++ you would define as global friend functions,
you define as static operators in the class. This is considered a superior design in that you do
not need to make any special exceptions to the encapsulation of the private data for a class in
order to support commutative operators that work with primitive types.

In Listing 7-22, the addition operators between Complex and double are declared as static
operators in the class. These operators would have been global friend functions in a native
C++ class.

In addition, the operator for adding two complex numbers could also be defined as static,
as in Listing 7-22, rather than as a member operator as it would be in classic C++.

Listing 7-22. Defining a Static Operator

// complex.h
using namespace System;

value class Complex
{
 double re;
 double im;

 public:

 Complex(double real, double imag) : re(real), im(imag)
 { }

 // unary minus
 Complex operator-()
 {
 return Complex(-re, im);
 }

Hogenson_705-2C07.fm Page 205 Wednesday, October 18, 2006 4:50 PM

206 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

 // Addition of two complex numbers.
 // Could also be defined as a member operator.
 static Complex operator+(Complex c1, Complex c2)
 {
 return Complex(c1.re + c2.re, c1.im + c2.im);
 }
 // This cannot be a member operator, since a double is on the left.
 static Complex operator+(double d, Complex c)
 {
 return Complex(c.re + d, c.im);
 }
 // If Complex is the first argument, this could also be
 // a member operator.
 static Complex operator+(Complex c, double d)
 {
 return Complex(c.re + d, c.im);
 }

 // etc.

};

Conversion Operators and Casts
As you know, in classic C++ you can define type conversion operators to enable automatic
conversions between your type and another type. You can do this in managed types as well as
in C++/CLI. The additional option you have in C++/CLI is to specify whether the conversion
requires an explicit cast, or not. You do this with the explicit keyword. While the explicit
keyword is also used in classic C++, in classic C++ it is used only on constructors, to prevent the
constructor from being used to define an implicit conversion. In C++/CLI, the situation is
different. Constructors for managed types are never used for implicit conversions, whether or
not the explicit keyword is used on them, so using the keyword would be redundant. However,
the keyword is used on conversion operators. Without the keyword, the conversion operator is
assumed to be implicit, as it is in classic C++. With the keyword, the conversion operator is only
invoked with an explicit cast (see Listing 7-23).

Listing 7-23. Using explicit with a Conversion Operator

// explicit_conversion.cpp

using namespace System;

value class BigIntExplicit
{
 __int64 m_i;

Hogenson_705-2C07.fm Page 206 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 207

 public:

 explicit BigIntExplicit(int i) : m_i(i)
 { }

 explicit operator int()
 { return m_i; }

 explicit static operator BigIntExplicit(int i)
 { return BigIntExplicit(i); }

 void takeBigIntExplicit(BigIntExplicit b) {}
};

value class BigIntImplicit
{
 __int64 m_i;

 public:

 BigIntImplicit(int i) : m_i(i)
 { }

 operator int()
 { return m_i; }

 static operator BigIntImplicit(int i)
 { return BigIntImplicit(i); }

 void takeBigIntImplicit(BigIntImplicit b) {}
};

int main()
{
 BigIntExplicit b_exp(400);
 BigIntImplicit b_imp(500);

 int i = safe_cast<int>(b_exp); // OK: requires explicit cast

 int j = b_imp; // OK: implicit

 // int cannot implicitly be converted to BigInt1 and BigInt2
 // with the constructor; instead, you define the static conversion operator.
 // This is different from standard C++, which uses the constructor
 // for such implicit conversions.
 b_exp.takeBigIntExplicit(safe_cast<BigIntExplicit>(i));
 b_imp.takeBigIntImplicit(j);
}

Hogenson_705-2C07.fm Page 207 Wednesday, October 18, 2006 4:50 PM

208 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

In Listing 7-23, observe several things:
The explicit keyword on operator int used in BigIntExplicit disallows implicit conver-

sions from BigIntExplicit to int. This is useful if you want to prevent unexpected conversions
from taking place without an explicit cast.

The explicit keyword on the constructor for BigIntExplicit has no effect. We need the
static operator BigInt that takes an int to convert. Again we have the choice of making the
operator explicit or implicit.

We use the preferred safe_cast casting mechanism. C-style casts (i.e., using the target type
name in parentheses) are supported in C++/CLI, and if used, evaluate to another type of cast. All of
the preceding conversion functions will work with C-style casts and static_cast as well. In the next
sections, I’ll explain casting in C++/CLI and review the various casting mechanisms in classic C++,
which are also available in C++/CLI. The next chapter will revisit dynamic_cast in the context of
inheritance.

C-Style Casts

C-style casts are casts that use the parentheses syntax used in C. The use of C-style casts is
not recommended since it can be difficult to tell what type of cast will actually be performed.
However, there are definite rules that determine the type of cast actually performed. Basically,
the compiler attempts various types of casts ranging from the safest to the least safe. If possible,
the validity of the cast will be determined at compile time. If the types involved in the conver-
sion differ only by whether or not they are constant, the cast is interpreted as a const_cast. If
the two types are in the same inheritance chain or are both interface handles, the safe_cast is
used. Next, the compiler will attempt to interpret the cast as a static_cast. This will succeed if
the types have a defined conversion (for example, a conversion operator). Also, if a safe_cast
or static_cast will work if combined with a const_cast, the compiler will do so. Finally, if the
compiler cannot determine whether a static_cast is valid, a runtime check will be performed.
If the runtime check fails, an InvalidCastException will be generated.

static_cast

static_cast is used in the usual way. It is commonly used to convert a pointer to a base class
to a pointer to a derived class. When used in this context, there is no runtime check to verify
that the object really is of the derived class. This means that it’s possibly unsafe, but often
faster. If the object is not of the derived class, your code has a potentially serious error that will
not be checked at runtime.

One potential problem with static_cast is that the code that is generated can’t always be
verified to be safe. Compiler checking for unsafe code can be enabled by using a particular
compiler option (/clr:safe), so depending on the specific cast, static_cast may or may not be
allowed when using the /clr:safe compiler option. Verifiably safe code has many uses, for
example, running in restrictive environments such as a web browser. Chapter 12 will discuss
how to write verifiably safe code. You’ll probably want to use constructs, like safe_cast, that can
be verified to be safe whenever possible, even if you don’t specifically intend to use /clr:safe.

dynamic_cast

Dynamic casts are used when converting a type from a base class pointer into a derived class
pointer. A runtime check will be performed at the time of the conversion. If the conversion

Hogenson_705-2C07.fm Page 208 Wednesday, October 18, 2006 4:50 PM

C H A P T E R 7 ■ F E A T U R E S O F A . N E T C L A S S 209

fails, the value returned is nullptr but no exception is thrown. The behavior on failure is basi-
cally the only difference between dynamic_cast and safe_cast. This difference means that
dynamic_cast is not as slow as safe_cast, since throwing an exception is a particularly expensive
and time-consuming operation.

const_cast

This construct is used when you need to convert a const pointer, handle, or reference to a non-
const pointer, handle, or reference. Its use is considered more dangerous than static_cast
since it introduces the possibility of writing to read-only memory.

reinterpret_cast

This construct breaks type safety since it is an unchecked cast. It cannot be used in verifiable
code (safe code), and should be used sparingly, if at all. Using reinterpret_cast is equivalent
to asserting that you know for certain that the object can be converted to the given type, even
though it is not evident from the types involved.

safe_cast

This construct, which is new with C++/CLI, performs a verifiably safe cast for managed types or
interfaces. The cast is checked at runtime. safe_cast may be used wherever static_cast is
used, and is recommended. safe_cast may also be used to cast an interface pointer to an unre-
lated interface (a cast that static_cast cannot perform). The compiler will detect whether a
cast is safe without a runtime type check and only insert it if necessary for type safety, so there
is no performance loss unless the runtime check is required.

See Table 7-1 for a summary of the types of casts available in C++/CLI programs.

Table 7-1. Types of Casts Available in C++/CLI Programs

Type of Cast Example When Used Notes

C-style cast R^ r;
(Object^) r;

Anywhere Evaluates to another
type
of cast.

const_cast const int i;
const_cast<int>(i);

When casting
away const or
casting to a
constant

Can only remove or
add const (or volatile).

static_cast int i;
static_cast<double>(i)

Conversions
between
compile-time
compatible
types

No runtime check; use
for types in which the
validity of the cast is
checkable at compile
time.

dynamic_cast Base^ b;
dynamic_cast<Derived^>(b)

Conversions
with runtime
check in
inheritance
hierarchies

Evaluates to nullptr
on
failed cast.

Hogenson_705-2C07.fm Page 209 Wednesday, October 18, 2006 4:50 PM

210 C H A P T E R 7 ■ F E A T U R E S O F A . N E T C LA S S

Summary
In this chapter, you learned about several special elements that can be declared in classes to
model commonly used concepts: properties, to model the “has-a” relationship; delegates and
events, to model actions and responses; and operators, to model mathematical and other function-
ality. The text looked specifically at conversion operators and the expanded use of the explicit
keyword. You also saw various types of conversions and casts.

Next, you’ll learn all about inheritance.

reinterpret_cast int address;
reinterpret_cast<void*>
(address)

Force conver-
sion between
incompatible
types

Considered
dangerous.

safe_cast Base^ b;
safe_cast<Derived^>(b)

Conversion
with runtime
check when
necessary

Throws
InvalidCastException
on failed cast.

Table 7-1. Types of Casts Available in C++/CLI Programs (Continued)

Type of Cast Example When Used Notes

Hogenson_705-2C07.fm Page 210 Wednesday, October 18, 2006 4:50 PM

211

■ ■ ■

C H A P T E R 8

Inheritance

The inheritance model for C++/CLI classes is not the same as that in C++. Multiple inheritance
(of managed class types) is not supported. Instead, C++/CLI reference types may only inherit
from one base class, but may implement multiple interfaces. This is the only supported inheritance
model in the CLI, so languages such as C# and VB .NET support the same model as C++/CLI. Other
features of the model include the ability to specify whether a function with the same name as a
base class’s virtual function is intended to be an override to that function, or whether it is a new
function with the same name.

The philosophy behind this inheritance model is based on several ideas. One idea is that
multiple inheritance of class types leads to a lot of ambiguous calls when method names in
different bases collide. In large inheritance hierarchies with virtual base classes, the rules for
disambiguation of method calls are quite complicated and not easily comprehended. Another
issue is the difficulty of handling situations where the same base class appears more than once
in the inheritance chain. In such a case, the base class could be a virtual base class, which means
that only one instance of the base class should be in the most derived object, or a nonvirtual
base class, in which separate instances of the base object exist for every occurrence in the
inheritance tree. Initialization is also a troublesome issue—virtual base classes must be initialized
by the most derived object (to avoid ambiguity as to which class in the hierarchy is supposed to
do this). It’s very complicated, and as a language feature, most people find it difficult to learn
all the rules.

Multiple inheritance has its merits. The iostreams library is designed as a diamond-shaped
inheritance hierarchy with a virtual base class, ios, at its root, and I can see how this design
makes sense. The classes istream and ostream each inherit from ios, and iostream inherits
from both istream and ostream. The virtual base class ios gives both input streams (istream)
and output streams (ostream) some common functionality, such as status flags, and the iostream
combines the input and output streams into a stream that can handle both. This is a case where
multiple inheritance works well. However, some people have also seen some very convoluted
inheritance hierarchies that required a fine-toothed comb to untangle. Maybe the blame for
these should be placed at the feet of the library designers who created these hierarchies, not on
the language designers.

I’ll return to this discussion in the next chapter, which covers interfaces. Since the CLI
inheritance model does allow multiple inheritance of interfaces, it is quite expressive, and
most people say that it is flexible enough to handle most of the issues that true, full multiple
inheritance supports. Of course, there will no doubt be some multiple inheritance fans who
will point out design patterns that seem to absolutely require C++ multiple inheritance. Tech-
nically, you can still create and use a native, multiple-inheritance-based C++ class hierarchy in

Hogenson_705-2C08.fm Page 211 Wednesday, October 18, 2006 4:51 PM

212 C H A P T E R 8 ■ I N H E R I T A N C E

your C++/CLI programs (as long you’re not using safe mode) if your design requires it. You just
can’t have it be a managed type.

Another difference between inheritance in C++/CLI and classic C++ is the absence of private
or protected inheritance. Inheritance is always public, but the public keyword is optional. Private
inheritance was sometimes used in classic C++ to inherit an implementation: it is intended to
model the “has-a” relationship, which can also be modeled by containing the type as a field.

It is sometimes said that value types cannot participate in inheritance. This is not strictly
true; value types can implement interfaces, but not inherit from other value classes or reference
types. Value types do inherit from System::ValueType, although they have to be boxed in order
to realize this inheritance relationship. Unboxed value types have no virtual function table
with which to participate in polymorphism.

Name Collisions in Inheritance Hierarchies
C++/CLI provides some additional ways to control whether functions in a derived class over-
ride a base class function, or whether they simply provide a new function that hides the base
class function. The question is, Why? The answer has to do with real-world problems associ-
ated with updating the base class to a new version. Library vendors often add new functions,
including virtual functions, to their base classes to support new features. Consumers of these
libraries generally have their own classes that use the library’s base classes. It’s possible that
method name conflicts arise between the library consumer’s derived classes and the library
vendor’s base classes.

To make this a little more concrete, let’s say we’re creating an adventure game in which we
have a player up against numerous monsters. Our game is extensible, so we ship our game
library, and developers create their own monster types by inheriting from the Monster type in
our library. We also have other objects in the game other than monsters, such as weapons,
armor, and the like (all represented by an Item class) and tiles on the game map. So, our hier-
archy looks like Listing 8-1.

Listing 8-1. The Monster Hierarchy

// game_library.cpp
public ref class GameObject
{
};

public ref class Monster : GameObject
{
};

public ref class MapTile : GameObject
{
};

public ref class Item : GameObject
{
};

Hogenson_705-2C08.fm Page 212 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 213

To explore versioning issues, suppose a client of this game library has a Scroll class (see
Listing 8-2) representing magic spells written out on a scroll. This class supports a Read method
that invokes a spell:

Listing 8-2. A Class for Magic Spells

// client_game.cpp
#using "game_library.dll"
ref class Scroll : Item
{
 public:
 void Read() { /* read the scroll and invoke the spell */ }
};

Let’s say that we are shipping a new version of our library, and we add functionality to read
and write GameObject instances from a file. So we add Read and Write methods, as in Listing 8-3.

Listing 8-3. New Functionality for Game Objects

public ref class GameObject
{
 public:
 void Initialize();
 virtual void Read() { /* read data from file */ }
 virtual void Write() { /* write data to file */ }
};

They’re virtual so that derived classes can read and write their own information, if needed.
The question is, What happens when the user upgrades to the new version? In C++, what might
happen is that the virtual Read method for reading the scroll would silently override the Read
method to read from a file. Then, at runtime, when we try to read data (as in Listing 8-4), the
Read function in the Scroll class gets called and the game character casts a spell—not what was
intended at all!

Listing 8-4. Reading with an Unintended Method

void GameObject::Initialize()
{
 if (reading_from_file)
 {
 Read(); // Oops! Scroll method called.
 }

 // ...
}

Ideally, the compiler should catch any conflicts and allow these conflicts to be dealt with
appropriately by the consumers of the new library. If name conflicts occur, users could rename
your derived class functions or take some other action to eliminate the conflict. In some cases,

Hogenson_705-2C08.fm Page 213 Wednesday, October 18, 2006 4:51 PM

214 C H A P T E R 8 ■ I N H E R I T A N C E

when a vendor’s base class implements the functionality you were implementing in a derived
class, you might just decide to eliminate your version of this functionality. In any event, you
would want to make a conscious decision as to what to do.

The problem was solved initially by the designers of the CLI. C++/CLI follows the same
pattern. The designers of the CLI decided to eliminate accidental overriding by making over-
riding explicit in every case. You must use either the override keyword or the new keyword to
specify whether a derived class’s function is meant to replace the base class function or hide it.
If not, you get a compiler error. This design means that when you upgrade to a newer version
of a base class, you’ll know at compile time whether your application’s derived class has a
conflict before it causes problems.

Using the new Keyword on Virtual Functions
If we want to specify that the derived class function is a new function, not intended to override
the base function, we append new to the function signature as in Listing 8-5.

Listing 8-5. Using new to Override Overriding

// new_method.cpp
using namespace System;

// the game library's classes
ref class GameObject
{
 public:
 void Initialize(bool fromFile)
 {
 if (fromFile)
 {
 Read();
 }
 else
 {
 // other code
 }
 }
 virtual void Read()
 {
 Console::WriteLine("GameObject::Read");
 }
};

Hogenson_705-2C08.fm Page 214 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 215

ref class Item : GameObject
{
 // ...
};

// the user's class
ref class Scroll : Item
{
 public:
 virtual void Read() new
 {
 // Read the scroll in the game environment.
 Console::WriteLine("Scroll::Read");
 }
};

int main()
{
 Scroll^ scroll = gcnew Scroll();
 Item^ item = scroll;
 item->Initialize(true);
 scroll->Read();
}

The output of Listing 8-5 is as follows:

GameObject::Read
Scroll::Read

You might wonder about the new keyword being used here in a different context. Isn’t that
a problem? It’s not a problem because the compiler is sensitive to the context in which the new
keyword is used.

Using the override Keyword on Virtual Methods
The contextual keyword override is used to indicate an intentional override of a virtual func-
tion. Because new and override are required when overriding a virtual function, you are always
forced to make a conscious decision about whether your newly created function is intended to
override the virtual function or be a new function altogether.

Some methods are intended to be overridden frequently. The ToString method on Object
is commonly overridden to provide type-specific output. In Chapter 7 (Listing 7-8), you saw a
class that overrides the ToString method:

Hogenson_705-2C08.fm Page 215 Wednesday, October 18, 2006 4:51 PM

216 C H A P T E R 8 ■ I N H E R I T A N C E

class ElementType
{
 public:

 virtual String^ ToString() override
 {
 return String::Format(
 "Element {0} Symbol {1} Atomic Number {2} Atomic Weight {3}",
 Name, Symbol, AtomicNumber, AtomicWeight);
 }

 // ...
};

Other methods are less frequently overridden, such as the Equals method on Object.
Continuing with the role-playing game example, suppose we need to modify the Read

method since we are storing the spell information in the file, so that needs some additional
parsing in the Read method. We use override to implement the Read virtual function for the
Scroll class differently from the GameObject class, as shown in Listing 8-6.

Listing 8-6. Using override to Implement a Virtual Function

// override.cpp
using namespace System;

// the game library's classes
ref class GameObject
{
 public:
 void Initialize(bool fromFile)
 {
 if (fromFile)
 {
 Read();
 }
 else
 {
 // other code
 }
 }
 virtual void Read()
 {
 // general reading from a file for the GameObject
 Console::WriteLine("GameObject::Read");
 }
};

Hogenson_705-2C08.fm Page 216 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 217

ref class Item : GameObject
{
 // ...
};

// the user's class
ref class Scroll : Item
{
 public:
 virtual void Read() override
 {
 // special reading from a file pertaining to scroll class
 Console::WriteLine("Scroll::Read");
 }
};

int main()
{
 Scroll^ scroll = gcnew Scroll();
 Item^ item = scroll;
 item->Initialize(true);
 scroll->Read();
}

Here is the output of Listing 8-6:

Scroll::Read
Scroll::Read

What if you want both? Is it possible to have the same method in the class twice, one that
overrides and the other that is new? You cannot declare two Read methods with the same argu-
ment list, but you can achieve the effect of overriding any virtual calls to GameObject’s Read method
by explicitly specifying the function you are overriding using the syntax shown in Listing 8-7.

Listing 8-7. Explicitly Specifying a Function to Override

// explicit_override.cpp
using namespace System;

// the game library's classes
ref class GameObject
{
 public:
 void Initialize(bool fromFile)
 {

Hogenson_705-2C08.fm Page 217 Wednesday, October 18, 2006 4:51 PM

218 C H A P T E R 8 ■ I N H E R I T A N C E

 if (fromFile)
 {
 Read();
 }
 else
 {
 // other code
 }
 }
 virtual void Read()
 {
 Console::WriteLine("GameObject::Read");
 }
};

ref class Item : GameObject
{
 // ...
};

// the user's class
ref class Scroll : Item
{
 public:
 virtual void GameObjectRead() = GameObject::Read
 {
 // Read a file with additional parsing.
 Console::WriteLine("Scroll::GameObjectRead");
 }
 virtual void Read() new
 {
 // Read the scroll.
 Console::WriteLine("Scroll::Read");
 }

};

int main()
{
 Scroll^ scroll = gcnew Scroll();
 Item^ item = scroll;
 item->Initialize(true);
 scroll->Read();
}

The output of Listing 8-7 is shown here:

Hogenson_705-2C08.fm Page 218 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 219

Scroll::GameObjectRead
Scroll::Read

By specifying the function you are overriding, you can use a different name for the over-
ride, saving the Read name for your Scroll class’s functionality.

Abstract Classes
In classic C++, an abstract class is any class that contains one or more pure virtual methods.
C++\CLI has the same concept, but instead of being implicit, you explicitly declare such a class
with the abstract keyword.

As in classic C++, abstract classes in C++/CLI cannot be instantiated; they are usually used
as base classes. Individual methods may be declared abstract in two ways—in the old way using
the pure specifier (that funny = 0 appended after the function prototype), or using the abstract
contextual keyword on the function; that is,

virtual void f() = 0;

is the equivalent of

virtual void f() abstract;

If you do declare any function in a class abstract using either syntax just described, it
makes the class abstract, but it does not require that the class be declared as such. However,
you can also declare a class or structure abstract even if it doesn’t have any abstract methods.
Derived classes of abstract classes may themselves be abstract, but the first nonabstract class
in the hierarchy will have to provide an implementation or have inherited an implementation
for all the abstract methods inherited from abstract base classes (and, as you will see in the next
chapter, any abstract methods from interfaces, too). Listing 8-8 shows an example.

Listing 8-8. Declaring Abstract Classes

// abstract_classes.cpp

// Notice that the abstract keyword follows the class name.
ref class GameObject abstract
{
 int ID;

 public:

 // an abstract method with no implementation
 // provided
 virtual void ReadFromFile() abstract;

Hogenson_705-2C08.fm Page 219 Wednesday, October 18, 2006 4:51 PM

220 C H A P T E R 8 ■ I N H E R I T A N C E

 // a nonabstract virtual method with an implementation
 virtual void UpdateID(int id)
 {
 ID = id;
 }
};

ref class Monster : GameObject
{

 public:
 // overrides the base class abstract function
 virtual void ReadFromFile() override
 {
 // code to read in data for the type
 }
};

As you can see in Listing 8-8, the abstract modifier appears after the class name. If this
seems odd, just realize that it allows abstract to be a contextual keyword rather than a normal
keyword, thus preventing problems if you have an identifier called abstract in your code.

Handles may be created with the abstract class type, and they may be used to reference
instances of nonabstract derived classes. This lets you define methods that take the abstract
base class as a handle type that will work with instances of any of the derived classes.

A value type may be declared abstract. Since a value type is also sealed (as discussed in the
next section), such a class would be abstract and sealed. It would not be possible to create an
instance of such a type, and although you could call static methods on it, you would have to
provide an implementation of these methods.

There are many ways in which abstract classes are different from interfaces. Abstract classes
can inherit from nonabstract classes. Instance functions (including properties) and instance
fields may be defined, not just declared, in abstract classes. None of that is possible in an inter-
face class. This difference has big implications for the choice between abstract classes and
interfaces when designing a library, especially a library that you intend to update with a new
version. Abstract classes are more easily changed in subsequent versions. If you add a method
to an interface, all the classes that implement that interface must implement the new method.
If you add a method to an abstract class, you can provide an implementation in the class. You
just add a nonabstract method to the abstract class.

Sealed Classes
The sealed modifier may be applied to methods, classes, or structs. Methods marked sealed
may not be overridden by derived classes. Classes and structs marked sealed cannot be inher-
ited from. The syntax for a sealed class is as in Listing 8-9.

Hogenson_705-2C08.fm Page 220 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 221

Listing 8-9. Sealed Class Syntax

// sealed.cpp

ref class C sealed
{
};

ref class B : C // Error: cannot inherit from a sealed class.
{
};

Value classes are implicitly sealed; the use of sealed in the class declaration is not an error,
although it is not necessary.

Like abstract, the sealed modifier may also be used on an individual function. A sealed
type indicates that all the functions in the class are sealed, but when used on an individual
function, sealed indicates that only that function cannot be overridden.

Derived classes can use new on a sealed base class function; however, they may not use
override. If you use new on a sealed base class function, you are creating a totally unrelated
method.

The abstract or sealed modifiers apply to individual overloads of overloaded functions.
Thus, one of a series of function overloads may be sealed, but this does not prevent the other
overloads from being overridden in derived classes.

Abstract and Sealed
You can use both abstract and sealed. Applied to a type, this makes the type rather like a
namespace or “static class.” You cannot create any instances of such a type, but you can define
static fields and methods on the type, as in Listing 8-10.

Listing 8-10. An Abstract Sealed Class

// abstract_sealed.cpp
using namespace System;

ref class A abstract sealed
{
 static int i = 1;
 static int j = 2;
 public:
 static A() { Console::WriteLine("A::A()"); }
 static void f() { Console::WriteLine("A::f " + i); }
 static void g() { Console::WriteLine("A::g " + j); }
};

Hogenson_705-2C08.fm Page 221 Wednesday, October 18, 2006 4:51 PM

222 C H A P T E R 8 ■ I N H E R I T A N C E

int main()
{
 A::f();
 A::g();
}

The output of Listing 8-10 is as follows:

A::A()
A::f 1
A::g 2

The modifiers abstract and sealed may be reversed in order.

Virtual Properties
Properties participate in inheritance-like methods, but it’s worth discussing some particulars.
Property getter and setter methods may be virtual. The virtual keyword may be applied to the
property, and thereby to both the get and the set methods, or to the individual get and set
methods.

A property that overrides a base class virtual property cannot be written out as a trivial
property, because there would be no way to make it any different from the base class property.
You can successfully override a base class trivial property with a fully specified property, as in
Listing 8-11. The get and set methods must be fully specified, and the override modifier must
be applied to them individually.

Listing 8-11. Overriding a Trivial Property

// virtual_properties.cpp
using namespace System;

ref class Base
{
 public:

 virtual property int Prop;
};

ref class Derived : Base
{
 int prop;

 public:

Hogenson_705-2C08.fm Page 222 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 223

 virtual property int Prop
 {
 int get() override { return prop; }
 void set(int value) override { prop = value; }
 }

};

The virtual keyword may also be applied to the individual get and set methods rather
than to the property, as in Listing 8-12. This might be useful if you are only overriding one of
the accessors, or if you need to make one nonvirtual and one virtual.

Listing 8-12. Using Virtual Accessors

// virtual_properties2.cpp

using namespace System;
using namespace System::Collections::Generic;

value class Isotope
{
 public:
 property unsigned int IsotopeNumber;
 property unsigned int AtomicNumber;
 property double Mass;
};

ref class Element
{
 double atomicWeight;

 public:
 property unsigned int AtomicNumber;
 property String^ Name;
 property String^ Symbol;

 property double AtomicWeight
 {
 virtual double get() { return atomicWeight; }
 void set(double a) { atomicWeight = a; }
 }

 Element(String^ name, String^ symbol,
 double a, double n)

Hogenson_705-2C08.fm Page 223 Wednesday, October 18, 2006 4:51 PM

224 C H A P T E R 8 ■ I N H E R I T A N C E

 {
 AtomicNumber = n;
 AtomicWeight = a;
 Name = name;
 Symbol = symbol;
 }
};

ref class HydrogenWithIsotopes : Element
{

 double atomicWeight;

 public:

 property List<Isotope>^ Isotopes;
 property List<double>^ IsotopeAbundance;

 property double AtomicWeight
 {
 virtual double get() override
 {
 // Check to see if atomic weight has been calculated yet.
 if (atomicWeight == 0.0)
 {
 double total = 0.0;
 if (Isotopes->Count == 0)
 return 0.0;
 for (int i = 0; i < Isotopes->Count; i++)
 {
 total += Isotopes[i].Mass * IsotopeAbundance[i];
 }
 atomicWeight = total /* / Isotopes->Count */ ;
 }
 return atomicWeight;
 }
 }

 public:

Hogenson_705-2C08.fm Page 224 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 225

 HydrogenWithIsotopes() : Element("Hydrogen", "H", 0.0, 1)
 {
 Isotopes = gcnew List<Isotope>();
 IsotopeAbundance = gcnew List<double>();

 Isotope isotope1; // Hydrogen 1
 isotope1.IsotopeNumber = 1;
 isotope1.AtomicNumber = 1;
 isotope1.Mass = 1.0078250320710; // from about.com
 Isotopes->Add(isotope1);
 IsotopeAbundance->Add(.99985);

 Isotope isotope2; // Hydrogen 2 : Deuterium
 isotope2.IsotopeNumber = 2;
 isotope2.AtomicNumber = 1;
 isotope2.Mass = 2.01410177784;
 Isotopes->Add(isotope2);
 IsotopeAbundance->Add(.000115);

 Isotope isotope3; // Hydrogen 3 : Tritium
 isotope3.IsotopeNumber = 3;
 isotope3.AtomicNumber = 1;
 isotope3.Mass = 3.016049277725 ;
 Isotopes->Add(isotope3);
 IsotopeAbundance->Add(0); // too small

 }
};

int main()
{
 Element e("Hydrogen", "H", 1.00794, 1);
 Console::WriteLine("AtomicWeight is listed as {0}", e.AtomicWeight);
 HydrogenWithIsotopes h;
 Console::WriteLine("AtomicWeight is computed as {0}", h.AtomicWeight);
}

Here is the output of Listing 8-12:

AtomicWeight is listed as 1.00794
AtomicWeight is computed as 1.00790548002064

Special Member Functions and Inheritance
Special member functions such as constructors, destructors, and finalizers are not inherited.
In this section, you will see the implications of this in inheritance hierarchies.

Hogenson_705-2C08.fm Page 225 Wednesday, October 18, 2006 4:51 PM

226 C H A P T E R 8 ■ I N H E R I T A N C E

Constructors
As in classic C++, constructors are not inherited. Each derived class must define appropriate
constructors. The base class constructor may be called from the derived class constructor for
reference classes in the usual way by using the initializer list, as in Listing 8-13.

Listing 8-13. Calling a Base Class Constructor

// constructor_inheritance.cpp
using namespace System;

ref class MyBase
{
 int data;
 public:
 MyBase() { Console::WriteLine("MyBase::MyBase()"); }
 MyBase(int data_in) : data(data_in)
 { Console::WriteLine("MyBase::MyBase(int)"); }
};

ref class Derived : MyBase
{
 public:
 // Invoke the base class constructor.
 Derived(int data) : MyBase(data)
 { Console::WriteLine("Derived::Derived(int)"); }

};

int main()
{
 // Derived d; // illegal: ctor w/o args not inherited
 MyBase b;
 Derived d(100);
}

The output of Listing 8-13 is shown here:

MyBase::MyBase()
MyBase::MyBase(int)
Derived::Derived(int)

Even though the code looks very similar to what you would do with native classes in classic
C++, there is an important difference. The order in which initializer code is called is not the
same as in classic C++. Listing 8-14 demonstrates this. In this example, there is a classic C++
inheritance hierarchy in a native type, and the same hierarchy with a reference type. In both
cases, a field is initialized by the derived class constructor. The code is parallel in every way,
and yet the behavior is different.

Hogenson_705-2C08.fm Page 226 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 227

Listing 8-14. Order of Initialization

// constructor_order.cpp
using namespace System;

class NativeClass
{
 public:

 NativeClass()
 {
 Console::WriteLine("NativeClass: Field constructor.");
 }
};

ref class ManagedClass
{
 public:

 ManagedClass()
 {
 Console::WriteLine("ManagedClass: Field constructor.");
 }
};

class NativeBase
{
 public:
 NativeBase()
 {
 Console::WriteLine("NativeBase: Base class constructor.");
 }
};

class NativeDerived : NativeBase
{
 NativeClass field;

 public:
 NativeDerived() : field()
 {
 Console::WriteLine("Native: Derived class constructor.");
 }
};

Hogenson_705-2C08.fm Page 227 Wednesday, October 18, 2006 4:51 PM

228 C H A P T E R 8 ■ I N H E R I T A N C E

ref class ManagedBase
{
 public:
 ManagedBase()
 {
 Console::WriteLine("ManagedBase: Base class constructor.");
 }
};

ref class ManagedDerived : ManagedBase
{
 ManagedClass field;

 public:
 ManagedDerived() : field()
 {
 Console::WriteLine("ManagedDerived: Derived class constructor.");
 }
};

int main()
{
 NativeDerived nd;
 ManagedDerived md;
}

The different behavior is revealed when the code in Listing 8-14 is executed. The constructors
are called in a different order in the two cases:

NativeBase: Base class constructor.
NativeClass: Field constructor.
Native: Derived class constructor.
ManagedClass: Field constructor.
ManagedBase: Base class constructor.
ManagedDerived: Derived class constructor.

In the native type hierarchy, the base class constructor is called before the field initializer
is called. In the reference type hierarchy, the initializer for the field is called first, before the
base class constructor.

As long as your initializers have no dependency on base class’s fields, you don’t have to
worry about this difference. If your initializers do depend on base class fields, the initialization
code should be moved from the initializer list into the body of the constructor.

Virtual Functions in the Constructor
In classic C++, virtual functions behave differently in the constructor than they do elsewhere.
This is because it was seen as undesirable to call virtual functions on derived classes whose
constructors had not yet been called. Instead, the most derived function that is already constructed
is called, which is usually the version of the virtual function in the class whose constructor is

Hogenson_705-2C08.fm Page 228 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 229

being executed, but could be a function closer to the root of the tree if the function isn’t imple-
mented at that level in the inheritance tree. In C++/CLI, virtual functions act as they always do:
the most derived method is called. Given that, can you predict the output of Listing 8-15?

Listing 8-15. Using Virtual Functions in a Constructor

// native_managed_virtual.cpp

class NativeBase
{
 public:

 NativeBase()
 {
 f_virt();
 }

 virtual void f_virt()
 {
 System::Console::WriteLine("NativeBase::f_virt");
 }
};

class NativeDerived : public NativeBase
{
 public:

 NativeDerived()
 {
 f_virt();
 }

 virtual void f_virt()
 {
 System::Console::WriteLine("NativeDerived::f_virt");
 }
};

ref class ManagedBase
{
 public:

 ManagedBase()
 {
 f_virt();
 }

Hogenson_705-2C08.fm Page 229 Wednesday, October 18, 2006 4:51 PM

230 C H A P T E R 8 ■ I N H E R I T A N C E

 virtual void f_virt()
 {
 System::Console::WriteLine("ManagedBase::f_virt");
 }
};

ref class ManagedDerived : ManagedBase
{
 public:

 ManagedDerived()
 {
 f_virt();
 }

 virtual void f_virt() override
 {
 System::Console::WriteLine("ManagedDerived::f_virt");
 }
};

int main()
{
 NativeDerived nd;
 ManagedDerived rd;
}

The output of Listing 8-15 is as follows:

NativeBase::f_virt
NativeDerived::f_virt
ManagedDerived::f_virt
ManagedDerived::f_virt

Surprised? For CLI types, virtual function dispatch is always deep, meaning that the most
derived override is always called. In classic C++, it is shallow in the constructor, but deep every-
where else. In fact, you’ve arrived at the explanation of the difference in constructor initialization
order as well. Because the most derived virtual function gets called, functions can execute on
objects that have not been fully constructed. Having the fields get initialized first at least means
that fields will be valid objects when derived class virtual functions get called, although you still
need to take care in calling virtual functions in constructors, and also when implementing
virtual functions that are called by base class constructors, to remember that objects are in a
partially constructed state.

To override this behavior, specify the fully scoped base class function, like this:

Hogenson_705-2C08.fm Page 230 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 231

 ManagedBase()
 {
 ManagedBase::f_virt();
 }

Destructors and Inheritance
There is a difference in the way destructors behave in managed types in an inheritance hierarchy.
You may recall that for native class hierarchies, it is usually recommended that destructors be
virtual. In classic C++, using virtual destructors meant that all destructors in the inheritance
hierarchy would be called. Using nonvirtual destructors prevents this from happening. In C++/CLI,
destructors, whether declared virtual or not, are called up the inheritance hierarchy. This
behavior change reflects a general trend in the language to make life easier by making almost
universally recommended customs mandatory. Listing 8-16 demonstrates this behavior.

Listing 8-16. Calling Destructors

// destructors_and_inheritance.cpp
using namespace System;

ref class Base
{
 public:
 Base() {}
 ~Base() { Console::WriteLine("~Base"); }
};

ref class Derived : Base
{
 public:
 Derived() { }
 ~Derived() { Console::WriteLine("~Derived"); }
};

// The destructor will be called at the end of main.
int main()
{
 Derived d;
}

The output of Listing 8-16 is

~Derived
~Base

since the base class destructor was implicitly invoked. The most derived destructor always
executes first, just as it does in C++.

Hogenson_705-2C08.fm Page 231 Wednesday, October 18, 2006 4:51 PM

232 C H A P T E R 8 ■ I N H E R I T A N C E

Finalizers and Inheritance
Finalizers are not inherited and cannot be virtual. Like destructors, base class finalizers are
called when the finalizer for a derived class is called, as in Listing 8-17.

Listing 8-17. Calling Finalizers

// finalizers_and_inheritance.cpp
using namespace System;

ref class Base
{
 public:
 Base() { }
 ~Base() { Console::WriteLine("~Base"); this->!Base(); }
 !Base() { Console::WriteLine("!Base"); }
};

ref class Derived : Base
{
 public:
 Derived() { }
 ~Derived() { Console::WriteLine("~Derived"); this->!Derived(); }
 !Derived() { Console::WriteLine("!Derived"); }
};

void F()
{
 // Use stack semantics to create the object.
 Derived d;
}

void G()
{
 // Use the GC heap to create the object.
 Derived^ dh = gcnew Derived();

 // If you want to call the destructor for this object,
 // call it explicitly here, or delete the handle.
}

int main()
{
 // Since the destructor gets called, the finalizers
 // also get called when F goes out of scope.
 F();
 G();
 Console::WriteLine("Collecting after G()");

Hogenson_705-2C08.fm Page 232 Wednesday, October 18, 2006 4:51 PM

C H A P T E R 8 ■ I N H E R I T A N C E 233

 // Force a collection of dh: finalizer only, not
 // the destructor.
 GC::Collect();
}

Here is the output of Listing 8-17:

~Derived
!Derived
~Base
!Base
Collecting after G()
!Derived
!Base

The output of Listing 8-17 shows that the finalizer for the derived class is called first, followed
by any base classes. If there is more than one base class, the finalizers are called in order from
the most derived class up to the root base class.

Casting in Inheritance Hierarchies
As you know, in classic C++ casting up the conversion hierarchy doesn’t require an explicit
cast. The same is true in C++/CLI. For example:

Derived^ d = gcnew Derived();
Base^ b = d;

Casting down the inheritance hierarchy requires the use of safe_cast or dynamic_cast.

Base^ b = gcnew Derived();
Derived^ d = safe_cast<Derived^>(b);
d = dynamic_cast<Derived^>(b);

Both will work, but the behavior is different in the case that the cast fails. dynamic_cast will
return nullptr when the cast fails, requiring a null handle check after the cast statement.
safe_cast will throw an InvalidCastException instead. Listing 8-18 shows the proper usage:

Listing 8-18. Properly Checking Casts

Derived^ d;
// using safe_cast
try
{
 d = safe_cast<Derived^>(b);
}

Hogenson_705-2C08.fm Page 233 Wednesday, October 18, 2006 4:51 PM

234 C H A P T E R 8 ■ I N H E R I T A N C E

catch (InvalidCastException^ e)
{
 // handle error
}

// using dynamic cast
d = dynamic_cast<Derived^>(b);
if (d == nullptr)
{
 // handle error
}

safe_cast illustrates that the .NET platform error-handling mechanism is exception handling.
You will need to use exception handling if you use the .NET Framework. Chapter 10 will cover
this.

Summary
In this chapter, you’ve learned about several aspects of inheritance in managed type hierar-
chies. You’ve examined the use of new and override for virtual functions, the use of abstract
and sealed modifiers for methods and types, and the specifics of virtual properties and events.
You’ve also looked at some of the special members of a class, constructors, destructors, and
finalizers, and examined how they behave in an inheritance hierarchy. You also looked at casts
in class hierarchies.

In the next chapter, you’ll explore interfaces.

Hogenson_705-2C08.fm Page 234 Wednesday, October 18, 2006 4:51 PM

235

■ ■ ■

C H A P T E R 9

Interfaces

Interfaces may contain method declarations (including properties and events) and static
methods, but no instance method definitions and no instance data members. As you already
know, interfaces partially take the place of multiple inheritance in C++/CLI. However, the
words “inherit from” are not used; rather, the word used is “implements,” since the class that
implements an interface must provide the method bodies for all the instance methods declared in
the interface, even if it is an abstract class.

■Note Although the CLI itself does allow an abstract class implementing an interface to leave unimplemented
methods, this is not allowed in C++/CLI.

You’re probably used to using pointers or references to base classes in classic C++ to write
polymorphic functions. You can do this with handles to interfaces, too. Frequently, you write
code that uses interface handles if you want that code to be usable on a wide variety of possibly
unrelated objects (for example, a method that takes an interface handle as a parameter). As
long as all those object types implement the interface, you can use the function and never need
to know the actual underlying object type. And because each class that implements an inter-
face defines its own implementation of the interface methods, the behavior of different classes
implementing the same interface can be quite diverse.

Interfaces vs. Abstract Classes
Abstract classes and interfaces are somewhat similar in functionality but have different uses in
CLI programming. A class may implement many interfaces, but it can only be derived from one
class. In a well-designed class library, the relationship between a derived class and an abstract
base class is usually referred to as an “is-a” relationship. The interface relationship is slightly
different—a class that implements an interface has a relationship with the interface that might
be described as “as-a.” Accessing an object of type R through a specific interface I is equivalent
to treating the object of type R “as an” I. You could also say that implementing an interface is
like fulfilling a contract. Interfaces generally encapsulate some aspect of the behavior of an
object, not the identity of an object as an abstract base class does. A quick glance at the .NET
Framework interface shows that many have the “-ible” or “-able” suffix: IEnumerable,

Hogenson_705-2C09.fm Page 235 Thursday, October 19, 2006 8:01 AM

236 C H A P T E R 9 ■ I N T E R F A C E S

IComparable, IDisposable. Often, but not always, interfaces relate to specific activities that an
object is capable of participating in.

In practical terms, abstract classes are easier to change in later versions of a library. If you
ship a library with an interface and later release a new version of the library with an additional
method, you force everyone who uses that interface to add the method to their classes. With an
abstract class, you have a choice to provide a virtual implementation of the method, so as long
as that implementation is acceptable for any derived classes, users of the abstract class don’t
need to make any changes. With interfaces, there is no choice: any classes implementing the
modified interface will have to add the implementation. Depending on the situation, this
might or might not be desirable.

Declaring Interfaces
Listing 9-1 shows how an interface is declared and used in C++/CLI. The contextual keyword
interface is used with class. All members of an interface are automatically public, so no access
specifier is necessary in the interface declaration. Any other access control specifier is an error.
The interface is used rather like a base class, except that more than one interface may be specified
in the interface list. Methods that implement interface methods must be virtual.

Listing 9-1. Declaring and Implementing an Interface

// interface.cpp

interface class IInterface
{
 void f();
 int g();
};

ref class R : IInterface
{
 public:
 // The virtual keyword is required to implement the interface method.
 virtual void f() { }

 virtual int g() { return 1; }
};

If multiple interfaces are to be implemented, they are separated by commas on the base
list, as shown in Listing 9-2.

Listing 9-2. Implementing Multiple Interfaces

// interfaces_multiple.cpp

interface class IA { void f(); };

Hogenson_705-2C09.fm Page 236 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 237

interface class IB { void g(); };

// Implement multiple interfaces:
ref class R : IA, IB
{
 public:
 virtual void f() {}
 virtual void g() {}
};

The base list after the colon following the class name lists all the interfaces to be implemented
and the base class (if specified) in no particular order. An implicit base class, Object, for reference
types, or System::ValueType, for value types, may be listed explicitly, as in Listing 9-3.

Listing 9-3. Explicitly Specifying Implicit Base Classes

// interface_list.cpp

using namespace System;

interface class IA {};
interface class IB {};

ref class Base : IA // OK
{ };

ref class Derived : Base, IA // OK : Base class first.
{ };

ref class A : Object, IA // OK: Object may be explicitly stated.
{ };

value class V : ValueType, IA // OK: Value class inherits from ValueType.
{ };

ref class B : IB, Base // OK. Base class need not appear first (as in C#).
{ };

Interfaces Implementing Other Interfaces
An interface declaration may itself call for the implementation of other interfaces. When this
construct is used, it means that the class implementing the interface must implement all the
methods declared in the interface body, as well as any methods declared in interfaces added to
the base class list. Listing 9-4 illustrates this pattern.

Hogenson_705-2C09.fm Page 237 Thursday, October 19, 2006 8:01 AM

238 C H A P T E R 9 ■ I N T E R F A C E S

Listing 9-4. Interface Inheritance

// interfaces_implementing_interfaces.cpp

interface class IA { void f(); };

interface class IB : IA { void g(); };

ref class R : IB
{
 public:
 virtual void f() {}
 virtual void g() {}
};

When interfaces inherit from other interfaces, the new and override specifiers are not used
on the method declarations. These specifiers are only applicable to class inheritance. In fact,
an interesting case is the one of a class that inherits a method from a base class and also imple-
ments a method with the same name from an interface. In that case, new would indicate that
the method is different from the base class method (see Listing 9-5).

Listing 9-5. Using new to Implement an Interface Method

// base_and_interface.cpp

using namespace System;

ref class B
{
 public:

 virtual void f() { Console::WriteLine("B::f"); }
 virtual void g() { Console::WriteLine("B::g"); }
};

interface class I
{
 void f();
 void g();
};

ref class C : B, I
{
 public:

Hogenson_705-2C09.fm Page 238 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 239

 // f implements I::f but doesn't override B::f
 virtual void f() new
 {
 Console::WriteLine("C::f");
 }
 // g overrides B::g AND implements I::g
 virtual void g() override
 {
 Console::WriteLine("C::g");
 }
};

int main()
{
 B^ b = gcnew B();
 C^ c = gcnew C();
 I^ i = c;

 // behavior with the new specifier
 b->f(); // calls B::f
 c->f(); // calls C::f
 i->f(); // calls C::f since C::f implements I::f

 B^ bc = c; // b pointing to instance of C
 bc->f(); // calls B::f since C::f is unrelated

 // behavior with the override specifier
 b->g(); // calls B::g
 c->g(); // calls C::g
 i->g(); // calls C::g since C::g implements I::g

 bc->g(); // calls C::g since C::g overrides B::g
}

The output of Listing 9-5 is as follows:

B::f
C::f
C::f
B::f
B::g
C::g
C::g
C::g

Hogenson_705-2C09.fm Page 239 Thursday, October 19, 2006 8:01 AM

240 C H A P T E R 9 ■ I N T E R F A C E S

Interfaces with Properties and Events
Interfaces may have properties and events, but not fields. An implementing class must imple-
ment a trivial property’s get and set methods, or an event. This could occur by redeclaring the
trivial property or event in the implementing class, as in Listing 9-6.

Listing 9-6. Implementing Properties and Events

// interface_properties_events.cpp
using namespace System;

interface class I
{
 property int P1;
 event EventHandler^ E;

 property int P2
 {
 int get();
 void set(int v);
 }
};

ref class R : I
{
 int value;

 public:

 virtual property int P1;
 virtual event EventHandler^ E;

 virtual property int P2
 {
 int get() { return value; }
 void set(int v) { value = v; }
 }

};

Interface Name Collisions
Name conflicts can occur between interface methods and class methods or between methods
in multiple interfaces being implemented by the same class. In the case of a class that has a
method conflict with an interface, you use the explicit implementation syntax you saw in the
previous chapter to specify which method implements the interface method (see Listing 9-7).

Hogenson_705-2C09.fm Page 240 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 241

Listing 9-7. Disambiguating Name Collisions

// class_interface_method_ambiguity.cpp
using namespace System;

interface class IA
{
 void f();
};

ref class A : IA
{
 public:

 // Note that new is not used here.
 void f()
 {
 Console::WriteLine("A::f");
 }
 // explicit implementation syntax
 virtual void fIA() = IA::f
 {
 Console::WriteLine("A::fIA implementing IA::f");
 }
};

int main()
{
 A^ a = gcnew A();
 IA^ ia = a;
 ia->f();
 a->f();
}

Here is the output of Listing 9-7:

A::fIA implementing IA::f
A::f

As you can see, the method that gets called is determined by whether the method is accessed
through the interface or through the object. Now let’s turn to the case of a class implementing
two interfaces with the same name.

Inheritance in C++/CLI (and in other CLI languages such as C# and VB .NET) is different
from interface inheritance in some other languages, such as Java. The big difference between
the interface inheritance model in Java and the CLI is that CLI interfaces are independent of
each other, whereas in Java, interfaces can interfere with each other when name collisions
arise, such as when two or more interfaces implemented by the same type have methods with

Hogenson_705-2C09.fm Page 241 Thursday, October 19, 2006 8:01 AM

242 C H A P T E R 9 ■ I N T E R F A C E S

the same name. In the Java inheritance model, this is an ambiguity that must be resolved to a
single method. In the CLI inheritance model, both methods may be available on the type, and
you may access them both depending on what interface pointer you might be using. This rule
is like the rule used for interfaces in COM.

What this really means is that when you’re creating a class that implements two interfaces
that have methods with similar names, you don’t have to care about what potential name
conflicts might arise. In Java, it can be difficult to create one method that is a viable implemen-
tation of both interfaces. In CLI-based languages, both methods can coexist, and the interface
handle that is used determines which method is called.

Explicit interface implementation is the language construct that allows you to support
interfaces that have name conflicts. You create one method definition for each interface that
has the method, and you mark it in such a way that the compiler knows that it’s the version of
the method to be used when accessed through a given interface handle type. If it’s not being
accessed through an interface handle, but rather through a handle with the type of the object,
the calling code must resolve the ambiguity by specifying the interface in the call.

Consider the code in Listing 9-8.

Listing 9-8. Disambiguating by Specifying an Interface

// interface_name_collision.cpp
using namespace System;

interface class I1 { void f(); };

interface class I2 { void f(); };

ref class R : I1, I2
{
 public:

 virtual void f()
 { Console::WriteLine("R::f"); }
};

int main()
{
 R^ r = gcnew R();
 r->f(); // R::f() implements both I1's f and I2's f
}

The name conflict in Listing 9-8 is not an error, and the output is as you would expect:

R::f

In Listing 9-8, the function f in the class R implements both I1’s and I2’s version of f. This
might be desirable if the function that has the conflict has the same meaning in both interfaces,

Hogenson_705-2C09.fm Page 242 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 243

but if the interfaces have different notions of what f means and does, you need to explicitly
implement the functions inherited from each interface separately. The language provides
support for doing this, as in Listing 9-9.

Listing 9-9. Implementing Inherited Functions Separately

// explicit_interface_implementation.cpp
using namespace System;

interface class I1 { void f(); };

interface class I2 { void f(); };

ref class R : I1, I2
{
 public:

 virtual void f1() = I1::f
 {
 Console::WriteLine("R::f1 == I1::f");
 }

 virtual void f2() = I2::f
 {
 Console::WriteLine("R::f2 == I2::f");
 }
};

int main()
{

 R^ r = gcnew R();

 I1^ i1 = r;
 I2^ i2 = r;

 r->f1(); // OK -- call through the object.
 r->f2(); // OK -- call through the object.

 // r->f(); // Error: f is not a member of R.

 i1->f(); // OK -- call f1.
 i2->f(); // OK -- call f2.

 // r->I1::f(); // Compiler error: "direct call will fail at runtime".
 // r->I1::f1(); // Error: f1 is not a member of I1.
}

The final two calls are not supported. The output of Listing 9-9 is as follows:

Hogenson_705-2C09.fm Page 243 Thursday, October 19, 2006 8:01 AM

244 C H A P T E R 9 ■ I N T E R F A C E S

R::f1 == I1::f
R::f2 == I2::f
R::f1 == I1::f
R::f2 == I2::f

Interfaces and Access Control
You can also force a method to be available only through an interface, and not as a method on
the object instance. Using explicit implementation syntax, you set up a private method that
explicitly implements the interface method. Attempting to call the method outside the class
through the class handle or object will produce a compile error. The method may be called
through the interface without error (see Listing 9-10).

Listing 9-10. Using a Private Method to Implement an Interface

// interface_private.cpp

interface class IInterface
{

 void f();
 int g();
};

ref class R : IInterface
{
 // The virtual keyword is required to implement the interface.
 virtual void f() sealed = IInterface::f
 { }

 public:
 virtual int g() { return 1; }
};

int main()
{
 R^ r = gcnew R();
 IInterface^ ir = r;
 ir->f(); // f may be called through the interface.

 // r->f(); // Error: f is private.
 r->g(); // OK
}

Hogenson_705-2C09.fm Page 244 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 245

Interfaces and Static Members
In addition to virtual methods, interfaces may have static methods and static fields. Code like
that in Listing 9-11 is legal. Static methods on interfaces are nonvirtual, like all static methods,
so if your implementing class also defines a method with the same name, it is a different method.
Which method gets called depends on how the method is accessed.

Listing 9-11. Interfaces with Static Fields and Methods

// interfaces_static.cpp
using namespace System;

interface class IA
{
 static int i = 6;
 static const int j = 100;

 static void f() { Console::WriteLine("IA::f " + i); }
};

ref class A : IA
{
 public:

 static void f() { Console::WriteLine("A::f " + IA::j); }
};

int main()
{
 A^ a = gcnew A();
 IA^ ia = a;
 ia->f(); // Call IA::f through interface handle.
 a->f(); // Call A::f through object handle.
 IA::f(); // Call IA::f.
 A::f(); // Call A::f.
 a->IA::f(); // Call IA::f
}

Here is the output of Listing 9-11:

IA::f 6
A::f 100
IA::f 6
A::f 100
IA::f 6

Hogenson_705-2C09.fm Page 245 Thursday, October 19, 2006 8:01 AM

246 C H A P T E R 9 ■ I N T E R F A C E S

Literals in Interfaces
Interfaces may have literal fields, but not nonstatic constant fields. Recall from Chapter 6 that
static constant fields do not appear constant to assemblies that import the constants via #using,
whereas literal fields do appear constant in that case (see Listing 9-12).

Listing 9-12. Using Literals in Interfaces

// interfaces_constants.cpp

interface class I
{
 static const int i = 100; // OK : static members OK
 literal int j = 50; // OK : literals OK
 // const int k; // error : nonstatic field
};

Commonly Used .NET Framework Interfaces
The .NET Framework uses a large number of interfaces. Anyone programming with the .NET
Framework should know the most common ones. I’ll introduce you to a few of them.

IComparable
You implement IComparable whenever you want your type to support sorting algorithms that
expect to call a comparison method between objects of the same type. IComparable is about the
simplest interface you could imagine, since it only has one method, CompareTo. CompareTo takes
an Object as a parameter, so you should check the type of the object to make sure that the
comparison makes sense. IComparable also has a generic form. The generic form uses a typed
argument instead of an untyped argument, so there’s no need to check the type of the object
passed in. The generic forms of these common .NET Framework interfaces were introduced in
.NET 2.0 and are preferred over the nongeneric forms. Listing 9-13 is an example using the
generic form of IComparable.

Listing 9-13. Using Generic IComparable

// message_comparable_generic.cpp

using namespace System;

enum class SortByEnum
{
 SortByDate,
 SortByFrom,
 SortBySubject
};

Hogenson_705-2C09.fm Page 246 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 247

ref class Message : IComparable<Message^>
{
 public:

 static property SortByEnum SortCriterion;

 property DateTime DateReceived;
 property String^ From;
 property String^ Subject;
 property String^ Body;

 Message(DateTime dt, String^ from, String^ subject, String^ body)
 {
 DateReceived = dt;
 From = from;
 Subject = subject;
 Body = body;
 }

 virtual int CompareTo(Message^ msg)
 {

 switch (SortCriterion)
 {
 case SortByEnum::SortByDate:
 return this->DateReceived.CompareTo(msg->DateReceived);
 case SortByEnum::SortByFrom:
 return this->From->CompareTo(msg->From);
 case SortByEnum::SortBySubject:
 return this->Subject->CompareTo(msg->Subject);
 default:
 throw gcnew InvalidOperationException();
 }

 }

 // other methods...

};

// Print the message headers in sorted order.
void PrintHeaders(array<Message^>^ messages, SortByEnum sortOrder)
{
 Message::SortCriterion = sortOrder;
 Array::Sort(messages);

Hogenson_705-2C09.fm Page 247 Thursday, October 19, 2006 8:01 AM

248 C H A P T E R 9 ■ I N T E R F A C E S

 for (int i = 0; i < messages->Length; i++)
 {
 Console::WriteLine("Received: {0} From: <{1}> Subject: {2}",
 messages[i]->DateReceived, messages[i]->From,
 messages[i]->Subject);
 }
 Console::WriteLine();
}

int main()
{
 // Create some messages.
 array<Message^>^ message_array =
 {
 gcnew Message(DateTime(2006, 1, 12), "Nancy Carlisle", "Dog Jokes", ""),
 gcnew Message(DateTime(2006, 1, 15), "George Jones", "Bark mulch order", ""),
 gcnew Message(DateTime(2006, 1, 2), "George Jones", "Bark mulch offer", ""),
 gcnew Message(DateTime(2005, 12, 31), "Jeni Hogenson",
 "Wedding Anniversary", "")
 };

 PrintHeaders(message_array, SortByEnum::SortByDate);
 PrintHeaders(message_array, SortByEnum::SortByFrom);
 PrintHeaders(message_array, SortByEnum::SortBySubject);

}

IEnumerable and IEnumerator
Instances of a class that implements IEnumerable can be iterated over with the for each state-
ment. The code we’d like to be able to write might look like this (we’ll develop the Card class
representing a playing card in Listing 9-15 later in this chapter):

 for each (Card c in deck)
 {
 Console::WriteLine("{0} of {1}", c.Rank, c.Suit.ToString());
 }

To use for each with your own data structures, you must implement IEnumerable. IEnumerable
declares a single method: GetEnumerator. The GetEnumerator method returns an IEnumerator
handle. The actual type returned is an enumerator, which is an object you define that imple-
ments the IEnumerator interface. The IEnumerator interface looks like the code in Listing 9-14.

Hogenson_705-2C09.fm Page 248 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 249

Listing 9-14. IEnumerator

interface class IEnumerator
{
 property Object^ Current;
 bool MoveNext();
 void Reset();
};

Listing 9-15 is an example of a data structure that implements IEnumerable and therefore
supports iteration using the for each statement. There are several things to notice about this
code. First, there are two different versions of some methods implemented. We need to imple-
ment GetEnumerator from IEnumerable, but we’ve used explicit interface implementation to
make that method private and implemented a different public GetEnumerator. The for each
statement will use the nonvirtual method, which results in some modest efficiency gains. We’ve
done the same thing with the CardEnumerator::Current property; the explicit interface imple-
mentation must be on the accessor method, not the property.

Second, CardEnumerator is a nested class. I haven’t specifically said anything so far about
nested classes, but they work in C++/CLI in the same way that they work in classic C++. The
nesting makes the implementation more tidy, since otherwise we would need a forward decla-
ration or some out-of-line definitions, since Cards and CardEnumerator both reference each other.

Third, we create a snapshot of the collection before iterating over it. This is an often neglected
but very important part of implementing IEnumerable. Enumerating a collection when the
collection changes invalidates the enumeration. There are a couple of ways of dealing with this.
One is to create a snapshot of the collection at the time enumeration starts. This could be slow
depending on how it is done. A faster way would be to add a Boolean field, changed, and set it to true
in the methods that change the collection, such as the Shuffle method. Then, the MoveNext and
Current properties check this field, and if it is set, they throw an InvalidOperationException. When
you see how to implement a generic linked list in Chapter 11, you’ll encounter the latter method.
The two methods produce somewhat different runtime behavior. With the snapshot method,
we can call methods that modify the collection, and they will affect the original collection, but
not the copy we are interating over. With the other method, an InvalidOperationException is
generated whenever the collection is modified.

Listing 9-15. Enumerating Playing Cards

// cards_enumerable.cpp

using namespace System;
using namespace System::Text;
using namespace System::Collections;

enum class SuitEnum { Diamonds, Clubs, Hearts, Spades };

Hogenson_705-2C09.fm Page 249 Thursday, October 19, 2006 8:01 AM

250 C H A P T E R 9 ■ I N T E R F A C E S

// represents a playing card
value struct Card
{
 SuitEnum Suit;
 unsigned int Rank;
 literal int CHAR_HEART = 3; // ANSI heart character
 literal int CHAR_DIAMOND = 4; // ANSI diamond
 literal int CHAR_CLUB = 5; // ANSI club
 literal int CHAR_SPADE = 6; // ANSI spade

 // Render the two-character card using ANSI card values.
 virtual String^ ToString() override
 {
 StringBuilder^ s = gcnew StringBuilder();
 if (Rank <= 0 || Rank > 13)
 throw gcnew InvalidOperationException();
 else if (Rank < 11)
 {
 s->Append(Rank);
 }
 else
 {
 switch (Rank)
 {
 case 11: // Jack
 s->Append("J");
 break;
 case 12: // Queen
 s->Append("Q");
 break;
 case 13: // King
 s->Append("K");
 break;
 default:
 throw gcnew InvalidOperationException();
 }
 }
 switch (Suit)
 {
 case SuitEnum::Clubs:
 s->Append(CHAR_CLUB, 1);
 break;
 case SuitEnum::Hearts:
 s->Append(CHAR_HEART, 1);
 break;

Hogenson_705-2C09.fm Page 250 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 251

 case SuitEnum::Diamonds:
 s->Append(CHAR_DIAMOND, 1);
 break;
 case SuitEnum::Spades:
 s->Append(CHAR_SPADE, 1);
 break;
 default:
 throw gcnew InvalidOperationException();
 }
 return s->ToString();
 }
};

// Cards: represents a collection of cards
ref class Cards : IEnumerable
{
 array<Card>^ card_array;

 literal int K = 13; // King's ordinal position
 literal int CARDS_IN_DECK = 52; // cards in the deck
public:
 Cards()
 {
 // Create a standard deck.
 card_array = gcnew array<Card>(CARDS_IN_DECK + 1);
 for (int i = 1; i <= K; i++)
 {
 card_array[i].Suit = SuitEnum::Diamonds;
 card_array[i].Rank = i;
 card_array[i + K].Suit = SuitEnum::Clubs;
 card_array[i + K].Rank = i;
 card_array[i + 2*K].Suit = SuitEnum::Hearts;
 card_array[i + 2*K].Rank = i;
 card_array[i + 3*K].Suit = SuitEnum::Spades;
 card_array[i + 3*K].Rank = i;
 }
 }

 Cards(const Cards% c)
 {
 card_array = gcnew array<Card>(c.card_array->Length);
 for (int i = 0; i < c.card_array->Length; i++)
 {
 card_array[i] = c.card_array[i];
 }
 }

Hogenson_705-2C09.fm Page 251 Thursday, October 19, 2006 8:01 AM

252 C H A P T E R 9 ■ I N T E R F A C E S

 // Default indexed property. Allows use of
 // Cards[i] syntax to get a card by index.
 property Card default[int]
 {
 Card get(int index)
 {
 return card_array[index];
 }
 void set(int index, Card card)
 {
 card_array[index] = card;
 }
 }

 // the number of cards in this collection
 property int Count
 {
 int get()
 {
 return card_array->Length;
 }
 }

 // Shuffle the cards in this collection.
 void Shuffle()
 {
 // Swap 5000 cards.
 Random^ random = gcnew Random();
 for (int i = 0; i < 5000; i++)
 {
 int card1 = (int)Math::Ceiling(random->NextDouble() * CARDS_IN_DECK);
 int card2 = (int)Math::Ceiling(random->NextDouble() * CARDS_IN_DECK);
 Card temp = this[card1];
 this[card1] = this[card2];
 this[card2] = temp;
 }
 }

private:
 // IEnumerable::GetEnumerator method
 // Compiler requires a private virtual method to be marked sealed.
 virtual System::Collections::IEnumerator^ GetEnumeratorNonGeneric() sealed
 = System::Collections::IEnumerable::GetEnumerator
 {
 return GetEnumerator();
 }

Hogenson_705-2C09.fm Page 252 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 253

public:
 // Nonvirtual GetEnumerator method for efficiency; the virtual
 // methods call the nonvirtual method. For each uses the
 // nonvirtual method.
 IEnumerator^ GetEnumerator()
 {
 return (IEnumerator^) gcnew CardEnumerator(this);
 }

 // nested enumerator class
 ref class CardEnumerator : IEnumerator
 {
 int current;
 Cards^ cards;

 public:
 CardEnumerator(Cards^ cards_in)
 {
 // Snapshot the collection by calling the copy constructor.
 cards = gcnew Cards(*cards_in);
 // The enumerator should always start *before* the first element, so
 // in a zero-based collection that is -1, but here it is 0.
 current = 0;
 }

 private:
 // implements the IEnumerator Current property
 virtual property Object^ _Current
 {
 // Use explicit interface implementation syntax on the get
 // method, not the property. The compiler requires a private
 // virtual method to be marked "sealed".
 Object^ get() sealed = System::Collections::IEnumerator::Current::get
 {
 return Current;
 }
 }

 public:

 // nonvirtual Current property for maximum efficiency
 property Card Current
 {
 Card get()
 {

Hogenson_705-2C09.fm Page 253 Thursday, October 19, 2006 8:01 AM

254 C H A P T E R 9 ■ I N T E R F A C E S

 if (current <= 0 || current >= cards->Count)
 throw gcnew InvalidOperationException();
 return cards[current];
 }
 }

 // Implement the IEnumerator::MoveNext method.
 virtual bool MoveNext()
 {
 current++;
 if (current <= 0 || current > cards->Count)
 throw gcnew InvalidOperationException();
 else
 return current < cards->Count;
 }

 // Implement the IEnumerator::Reset method.
 virtual void Reset()
 {
 current = 0;
 }
 };

};

void PrintAll(Cards^ deck)
{
 for each (Card c in deck)
 {
 Console::Write("{0} ", c, c.Rank, c.Suit);
 // has no effect on iteration since collection is snapshot
 // but deck will remain shuffled when next used
 deck->Shuffle();
 }
 Console::WriteLine();
}

int main()
{
 Cards^ deck = gcnew Cards();
 PrintAll(deck);
 PrintAll(deck);
}

Hogenson_705-2C09.fm Page 254 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 255

The output of Listing 9-15 will be something like this:

1♦ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ 1♣ 2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣
1♥ 2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ 1♠ 2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠

1♠ 3♦ 4♣ 9♥ 5♦ Q♦ 2♥ 4♠ J♠ Q♣ K♣ 9♣ 7♣ J♣ 1♥ K♠ J♦ 10♠ 3♣ 8♣ 1♣ 10♥ 3♥ 6♦ 3♠ 6♠
8♠ 5♣ 2♣ 9♠ 5♠ 8♦ 4♦ Q♠ 4♥ 7♥ 2♠ 8♥ 6♥ 10♣ J♥ 9♦ K♦ 2♦ 5♥ K♥ 7♦ 1♦ 7♠ 10♦ 6♣ Q♥

Like IComparable, the IEnumerable interface has a generic as well as a nongeneric form. The
generic form inherits from the nongeneric form, so if your class implements the generic form,
you have to implement both IEnumerable and IEnumerable<T>. This will give you two versions
of GetEnumerator: one generic, one not.

Of course, there are many other interfaces defined in the .NET Framework. Many of them
are intended to be implemented by your classes in order to take advantage of some function-
ality in the framework.

Interfaces and Dynamically Loaded Types
A common use of interfaces is to allow runtime extensibility, perhaps to allow your users to add
their own objects into the system at runtime. You would provide a public interface to your
users. Your code would then be written with interface handles internally, so that your users’
methods are called whenever their type is loaded. To make this work, you need to dynamically
load the users’ assembly, then call some method in that assembly that creates the objects and
returns an interface handle with the user’s object as the underlying type.

You’ll use the .NET Framework Assembly class to dynamically load the assembly, and you’ll
use the .NET Framework reflection functionality to get at the types in the dynamically loaded
assembly. Reflection is like a souped-up version of runtime type information (RTTI) in classic
C++. It’s much more sophisticated than RTTI, mainly because of all the metadata that is tracked by
the CLR for .NET Framework types. In fact, reflection is a key reason why writing modern appli-
cations is easier with the CLR. Because modern applications often need to be much more
extensible than the monolithic applications of the past, you need to interact with types and
objects at runtime that you may never have envisioned at compile time. Let’s return to our
example of an extensible online role-playing game.

We want our users to be able to implement their own creatures or monsters within the
game. We publish an interface and distribute it in an assembly in our extension kit. Our interface
might look something like Listing 9-16. Our assembly would also include any classes that are used
in the interface, such as the AnimationSequence2D class, the Attack class, and AttackTypeEnum
referred to Listing 9-16.

Hogenson_705-2C09.fm Page 255 Thursday, October 19, 2006 8:01 AM

256 C H A P T E R 9 ■ I N T E R F A C E S

Listing 9-16. An Interface to Extend the Monster Game

// extension_monster.cpp

namespace MonsterExtensions
{

 // public classes AnimationSequence2D, Attack and AttackTypeEnum assumed

 public interface class IMonster
 {
 property String^ Name;
 property int Strength;
 property AnimationSequence2D^ Frames;
 Attack^ GenerateAttack(AttackTypeEnum attacktype);
 void DefendAttack(Attack^ attack);
 // etc.
 };
}

Our users implement the interface methods for generating an attack and defending
against attacks, and implement all the necessary initialization code to set values for the inter-
face properties, as in Listing 9-17.

Listing 9-17. Implementing the Monster Game Interface

// mymonster.cpp
#using "extension_monster.dll"

using namespace System;
using namespace MonsterExtensions;

public ref class MyMonster : IMonster
{
 public:

 virtual property String^ Name;
 virtual property int Strength;
 virtual property AnimationSequence2D^ Frames;

 virtual Attack^ GenerateAttack(AttackTypeEnum attacktype)
 {
 // Generate an attack.
 return gcnew Attack(/* attack details go here */);
 }

Hogenson_705-2C09.fm Page 256 Thursday, October 19, 2006 8:01 AM

C H A P T E R 9 ■ I N T E R F A C E S 257

 virtual void DefendAttack(Attack^ attack)
 {
 // code to process the attack
 }
};

We would provide a way to load the users’ assemblies using the .NET Framework Assembly
class. We will query users for their assembly name and the class name that implements
IMonster (see Listing 9-18).

Listing 9-18. Loading Users’ Assemblies

#using "IMonster.dll"
#using "extension_monster.dll"

using namespace System;
using namespace MonsterExtensions;
using namespace System::Reflection;

IMonster^ GetExtensionMonsterInterface(String^ userMonsterAssemblyFileName,
 String^ userMonsterClassName)
{
 Assembly^ userMonsterAssembly =
 Assembly::LoadFrom(userMonsterAssemblyFileName);
 IMonster^ userMonster = (IMonster^) userMonsterAssembly->CreateInstance(
 userMonsterClassName);
 return userMonster;
}

From then on, we would use the user-supplied class through the IMonster interface. You’ll
learn more about reflection in the next chapter.

Summary
In this chapter, you learned about the design philosophy of interfaces in C++/CLI as well as
explicit interface implementation and special considerations when using properties on an
interface. You were also introduced to some of the commonly used interfaces in the .NET
Framework, such as IComparable, which enables you to use collection classes to sort instances of
your types, and IEnumerable, which enables you to use the for each statement on your types.
You also considered the question of when abstract types are to be used and when interfaces are
best used, and considered the use of interfaces as stand-ins for dynamically loaded types.

You’ll get a chance to look at exceptions and attributes, and more closely at reflection, next.

Hogenson_705-2C09.fm Page 257 Thursday, October 19, 2006 8:01 AM

Hogenson_705-2C09.fm Page 258 Thursday, October 19, 2006 8:01 AM

259

■ ■ ■

C H A P T E R 1 0

Exceptions, Attributes,
and Reflection

In this chapter, you’ll begin by looking at aspects of exception handling in C++/CLI that are
not present in classic C++. Then you’ll look at attributes, which supply metadata for a type and,
although not part of standard C++, may be familiar if you’ve used previous versions of Visual C++.
You’ll learn how to use the existing .NET Framework attributes, examine some of the common
ones, and look at how to define and use your own attributes. Finally, you’ll get a brief overview
of the reflection features of the .NET Framework, which provide a way to discover information
on a type at runtime and use that information to interact dynamically with a type.

Exceptions
Exceptions are supported in classic C++, but not universally used. In .NET Framework
programming, exceptions are ubiquitous, and you cannot code without them. This chapter
assumes you are aware of the basic concepts of exception handling, throwing exceptions, and
the try/catch statement. All of these features of classic C++ are valid in C++/CLI code.

A key difference between exception handling in C++/CLI and in classic C++ is that excep-
tions are always thrown and caught by reference (via a handle), not by value. In classic C++,
exceptions could be thrown by value, which would result in a call to the copy constructor for
the exception object. In C++/CLI, exceptions are always on the managed heap, never the stack.
Therefore, you must use a handle when throwing a C++/CLI exception, as in Listing 10-1.

Listing 10-1. Throwing an Exception

try
{
 bool error;
 // other code

 if (error)
 {
 throw gcnew Exception();
 }
}

Hogenson_705-2C10.fm Page 259 Thursday, October 19, 2006 8:04 AM

260 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

catch(Exception^ exception)
{
 // code to handle the exception
}

The Exception Hierarchy
All .NET exceptions inherit from a single root class, System::Exception. Table 10-1 shows some
of the common exceptions thrown by the runtime in C++/CLI code.

What’s in an Exception?
A .NET Framework exception contains useful information that captures information about
what triggered the exception and how to address the problem. For example, the exception source
is stored as a string in the Source property; a text representation of the call stack is included in the
form of the StackTrace property; and there’s a Message property, which contains a message suitable
for display to a user. It’s use is demonstrated in Listing 10-2.

Table 10-1. Some Common .NET Framework Exceptions

Exception Condition

System::AccessViolationException Thrown when an attempt to read or write
protected memory occurs.

System::ArgumentException Thrown when an argument to a method is
not valid.

System::ArithmeticException Thrown when an error occurs in an arithmetic
expression or numeric casting operation. This is
a base class for DivideByZeroException,
NotFiniteNumberException, and
OverflowException.

System::DivideByZeroException Thrown when division by zero occurs.

System::IndexOutOfRangeException Thrown when an array access out of
bounds occurs.

System::InvalidCastException Thrown when a cast fails.

System::NullReferenceException Thrown when a null handle is dereferenced or
used to access a nonexistent object.

System::OutOfMemory Thrown when memory allocation with
gcnew fails.

System::TypeInitializationException Thrown when an exception occurs in a static
constructor but isn’t caught.

Hogenson_705-2C10.fm Page 260 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 261

Listing 10-2. Using the Properties of the Exception Class

// exception_properties.cpp

using namespace System;

int main()
{

 try
 {
 bool error = true;
 // other code

 if (error)
 {
 throw gcnew Exception("XYZ");
 }
 }
 catch(Exception^ exception)
 {
 Console::WriteLine("Exception Source property {0}", exception->Source);
 Console::WriteLine("Exception StackTrace property {0}",
 exception->StackTrace);
 Console::WriteLine("Exception Message property {0}", exception->Message);
 }
}

The output of Listing 10-2 is as follows:

Exception Source property exception_properties
Exception StackTrace property at main()
Exception Message property XYZ

When an unhandled exception occurs in a console application, the Message and
StackTrace data are printed to the standard error stream, like this:

Unhandled Exception: System.Exception: XYZ
 at main()

There’s also a property of the Exception class called InnerException, which may reference
an exception that gives rise to the exception we’re looking at. In this way, a cascading series of
exceptions may be nested one within the other. This could be useful if an exception occurs
deep down in low-level code, but there are several layers of libraries between the problem and
the code that knows how to handle such situations. As a designer of one of the intermediate
libraries, you could choose to wrap that lower exception as an inner exception and throw a
higher exception of a type that is more intelligible to your clients. By passing the inner exception,

Hogenson_705-2C10.fm Page 261 Thursday, October 19, 2006 8:04 AM

262 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

the inner exception information can be used by the error-handling code to respond more
appropriately to the real cause of the error.

Creating Exception Classes
You will often want to create your own exception classes specific to particular error conditions;
however, you should avoid doing this and use one of the standard Exception classes, if possible.
Writing your own exception class lets you filter on and write exception handlers specific to that
error. To do this, you may derive from System::Exception. You would normally override the
Message property in the Exception base class to deliver a more relevant error message (see
Listing 10-3).

Listing 10-3. Creating a Custom Exception

// exceptions_custom.cpp
using namespace System;

ref class MyException : Exception
{
 public:

 virtual property String^ Message
 {
 String^ get() override
 {
 return "You must supply a command-line argument.";
 }
 }
};

int main(array<String^>^ args)
{
 try
 {
 if (args->Length < 1)
 {
 throw gcnew MyException();
 }
 throw gcnew Exception();
 }
 // The first catch blocks are the specific exceptions that
 // you are looking for.
 catch (MyException^ e)
 {
 Console::WriteLine("MyException occurred! " + e->Message);
 }

Hogenson_705-2C10.fm Page 262 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 263

 // You may also catch other exceptions with multiple try blocks,
 // although it's better.
 catch (Exception^ exception)
 {
 Console::WriteLine("Unknown exception!");
 }
}

The output of Listing 10-3 (with no command-line arguments) is shown here:

MyException occurred! You must supply a command-line argument.

Using the Finally Block
C++/CLI recognizes the finally contextual keyword, which is a feature of other languages that
support exception handling such as Java and C#. The finally keyword precedes a block of code
known as a finally block. Finally blocks appear after catch blocks and execute whether or not an
exception is caught.

Use a finally block (see Listing 10-4) to put any cleanup code that you don’t want to duplicate
in both the try block and the catch blocks. The syntax is like that in other languages.

Listing 10-4. Using a Finally Block

try
 {
 // ...
 }
 catch(Exception^)
 {
 }
 finally
 {
 Console::WriteLine("finally block!");
 }

In the case of multiple finally blocks, they are executed “from the inside out” as demonstrated
in Listing 10-5.

Listing 10-5. Using Multiple Finally Blocks

// multiple_finally_blocks.cpp

using namespace System;

Hogenson_705-2C10.fm Page 263 Thursday, October 19, 2006 8:04 AM

264 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

int main()
{
 try
 {
 Console::WriteLine("Outer try");

 try
 {
 Console::WriteLine("Inner try");
 throw gcnew Exception("XYZ");

 }
 catch(Exception^ exception)
 {
 Console::WriteLine("Inner catch");
 }
 finally
 {
 Console::WriteLine("Inner finally");
 }
 }
 catch(Exception^ exception)
 {
 Console::WriteLine("Outer catch");
 }
 finally
 {
 Console::WriteLine("Outer finally");
 }
}

Here is the output of Listing 10-5:

Outer try
Inner try
Inner catch
Inner finally
Outer finally

The first finally block to execute is the one paired with the last try block to execute. The
finally block is a separate scope from the try block, so, for example, any variables declared in
the try block aren’t available in the finally block. Also, if you created any stack objects, their
destructors would be called at the end of the try block and before the finally block executes.

Don’t try to use jump statements (e.g., continue, break, or goto) to move into or out of a
finally block; it is not allowed. Also, you cannot use the return statement from inside a finally
block. If allowed, these constructs would corrupt the stack and return value semantics.

Hogenson_705-2C10.fm Page 264 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 265

Dealing with Exceptions in Constructors
A difficult problem in any language is what to do with objects that fail to be constructed prop-
erly. When an exception is thrown in a constructor, the result is a partially constructed object.
This is not a largely theoretical concern; it’s almost always possible for an exception to be thrown in
a constructor. For example, OutOfMemoryException could be thrown during any memory alloca-
tion. The finalizer will run on such partially constructed objects. In C++, destructors do not run
on partially constructed objects. The finalizer is called by the runtime to clean up before the
runtime reclaims the memory. As usual, the execution of the finalizer is nondeterministic, so it
won’t necessarily happen right away, but will happen eventually. This is another reason to write
finalizers carefully, without assuming any objects are valid. In Listing 10-6, an exception is
thrown in the construction of a member of A in A’s constructor. The finalizer is called to clean
up; the destructor is not called.

Listing 10-6. Throwing an Exception in a Constructor

// exceptions_ctor.cpp

using namespace System;

// the type of the member
ref class Class1
{
 public:

 Class1()
 {
 // Assume a fatal problem has occurred here.
 throw gcnew Exception();
 }
};

ref class A
{

 Class1^ c1;
 Class1^ c2;

 public:

 A()
 {
 // c1 has a problem; it throws an exception.
 c1 = gcnew Class1();

Hogenson_705-2C10.fm Page 265 Thursday, October 19, 2006 8:04 AM

266 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

 // c2 never gets created.
 c2 = gcnew Class1();
 }

 void F() { Console::WriteLine("Testing F"); }

 ~A() // Never gets called, even if A is created with stack semantics
 {
 Console::WriteLine("A::~A()");
 }

 !A() // Gets called for partially constructed object
 {
 Console::WriteLine("A::!A()");
 // Don't try to use C2 here without checking for null first.
 }

};

int main()
{
 A a;
 a.F(); // never reached
}

This example shows what happens in the simple case of a class without a base class other
than Object. In the case where some base classes have already been initialized, the finalizers
for any base classes will also execute.

Throwing Nonexception Types
C++/CLI allows you to throw objects that are not in the exception class hierarchy. If you’ve
done a lot of programming in C# or Visual Basic .NET, this may be somewhat of a surprise,
since in those languages, you are limited to throwing exception objects that derive, directly or
indirectly, from System::Exception. In C++/CLI, you’re not limited in this way. However, if you
are calling C++/CLI code from C# or VB .NET code, and an exception object of an unusual type
is thrown, it will be wrapped in an exception from the point of view of the C# or VB .NET code.

The basic idea is simple, as Listing 10-7 shows.

Listing 10-7. Throwing an Object That’s Not an Exception

// throw_string.cpp

using namespace System;

public ref class R
{

Hogenson_705-2C10.fm Page 266 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 267

public:
 static void TrySomething()
 {
 throw gcnew String("Error that throws string!");
 }
};

int main()
{
 try
 {
 R::TrySomething();
 }
 catch(String^ s)
 {
 Console::WriteLine(s);
 }
}

The subtlety arises when you run this C++/CLI code from another language. If the code in
Listing 10-7 is compiled to a DLL assembly and reference in C#, and you call the R::TrySomething
method, a RuntimeWrappedException object is created.

Note that cross-language work is best done in the Visual Studio IDE, so you can be sure
that the right references, assembly signing, and manifests are all done properly. Create two
projects in the same solution (see Listing 10-8). Set the C# project as the startup project, and
configure the C++/CLI project as a DLL. Reference the C++/CLI project from the C# project,
and build.

Listing 10-8. Wrapping a Nonexception Object

// runtimewrappedexception.cs
using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.CompilerServices;

class Program
{
 static void Main(string[] args)
 {
 try
 {
 R.TrySomething();
 }

Hogenson_705-2C10.fm Page 267 Thursday, October 19, 2006 8:04 AM

268 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

 catch (RuntimeWrappedException e)
 {
 String s = (String)e.WrappedException;
 Console.WriteLine(e.Message);
 Console.WriteLine(s);
 }
 }
}

The output of Listing 10-8 is as follows:

An object that does not derive from System.Exception has been wrapped in a
RuntimeWrappedException.
Error that throws string!

I do not recommend throwing nonexception objects. Throwing exception objects that all
derive from the root of the same exception hierarchy has the advantage in that a catch filter
that takes the Exception class will capture all exceptions. If you throw objects that don’t fit this
scheme, they will pass through those filters. There may be times when that behavior is desired,
but most of the time you are introducing the possibility that your nonstandard exception will
be erroneously missed, which would have undesired consequences. (The paradox is that a
non-Exception exception is an exception to the rule that all exceptions derive from Exception.
You can see how confusing it could be.)

Unsupported Features
Exception specifications are a C++ feature that allow a programmer to declare what exceptions
a particular function can throw. This is intended as a heads-up to users of a function that they
should be prepared to deal with these exceptions. Exception specifications are not supported
in Visual C++ even in native code, and C++/CLI does not support this feature either. In general,
this feature is impractical because it is not usually feasible to list the complete set of exceptions
that a given block of code might generate, most particularly exceptions that propagate from
any function called that doesn’t have exception specifications. Furthermore, some common
exceptions, such as OutOfMemoryException, could be generated almost anywhere. Should these
be included in all exception specifications? Another problem is performance, since this feature
adds to the already intensive runtime overhead associated with exception handling. For all
these reasons, the designers of the CLI chose not to implement this feature.

Exception-Handling Best Practices
Exception handling is controversial. All aspects of exception handling, it seems, are up for
debate. Regardless of what your position is, one thing remains certain: if your framework uses
exceptions, you, too, must use exceptions. For CLI types, there is no option not to use exception
handling. However, you must use it sensibly and with restraint. Exceptions should not be used
in normal flow control, because they do incur a significant performance penalty when thrown
and caught. Exceptions should be used for truly exceptional conditions, errors that would not
be expected from normal, correct program functioning.

Hogenson_705-2C10.fm Page 268 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 269

Here are some best practices for handling exceptions:

Avoid unnecessary proliferation of exception types. If an appropriate .NET Framework
standard exception exists, then it should be used. For example, if you are reporting invalid
arguments to a function, you should throw ArgumentException, not an exception of your
own making. It is appropriate to define your own exception when it is important to filter
on that exception and respond uniquely to it.

Throw and catch specific exceptions, not the System::Exception class at the root hierarchy.
Also, catch blocks should be ordered so that you catch the most specific exceptions first,
followed by more general exceptions. If you do both of these things, you can write code
that knows how to handle the specific exceptions and be sure that it is called when those
specific errors occur.

Catch only those exceptions that you can reasonably handle. Any exceptions that your
code at this particular level in the application doesn’t know how to handle should be allowed
to propagate up the chain, rather than “recovering” from an exception and attempting to
continue when complete recovery isn’t possible. This poor practice is known as swallowing
errors. It’s usually better to bring down an application with an unhandled exception than
to continue in an unknown state.

Put cleanup code in the finally block, rather than in the catch block. The catch block is for
handling and recovering from the error, not cleaning up.

When rethrowing exceptions in a catch block, use the throw statement without providing
the exception object. This is interpreted correctly by the runtime as continuing the propaga-
tion of the same exception, rather than starting a new exception. The complete call stack is
then preserved in the exception’s StackTrace property.

Much more could be said about exception-handling best practices, and since exception
handling is common to many languages, guidance in one language often applies to all languages.
I’ve only scratched the surface here. There are many resources available to help use exceptions
properly. See, for example, Framework Design Guidelines: Conventions, Idioms, and Patterns
for Reusable .NET Libraries by Krzysztof Cwalina and Brad Abrams (Addison-Wesley, 2005).

Exceptions and Errors from Native Code
When dealing with an application that includes native code and managed code, you will be
dealing with potentially many different types of error codes and exceptions. In addition to
C++/CLI exceptions, you will have C++ exceptions, COM and Win32 error codes, and possibly
structured exceptions, which are a Microsoft-specific extension to C. You also have to deal with
all the error codes and exceptions in libraries that you’re using. Exceptions from native code
are wrapped in managed exceptions. Also, error codes from COM (HRESULTs) are wrapped in
exceptions when they propagate to managed code. While I cannot go into all the details behind
dealing with these diverse situations in this introductory text, you’ll learn some of the basics in
Chapter 12.

Hogenson_705-2C10.fm Page 269 Thursday, October 19, 2006 8:04 AM

270 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

Attributes
Literally, metadata means “data about data.” Attributes represent metadata for the program
element to which it is applied. Attributes may be applied to many program elements, including
assemblies, classes, constructors, delegates, enumerated types, events, fields, interfaces, methods,
portable executable file modules, parameters, properties, return values, structures, or even
other attributes.

In the context of this discussion, metadata means data that is not directly part of whatever
it is applied to. In this sense, attributes allow information to be associated with program enti-
ties without affecting the internal structure of the entity. For example, an attribute naming the
author of a type is not really part of the internal structure of a type. Attributes for program elements
may be queried at runtime, so programs may make use of the metadata to manipulate objects.
The program element to which an attribute is applied is referred to as the attribute target.

How Attributes Work
Attributes are classes defined either in the .NET Framework BCL or another library. You can
define your own attributes as well by creating a class that derives from another attribute. The
attribute class contains the data to be associated with a program element. Attributes are then
applied to program elements using a syntax involving square brackets, called an attribute speci-
fication, as follows:

[SomeAttribute(arguments)]

If the attribute doesn’t take any arguments, you can omit the parentheses entirely.
Where the attribute is placed in the code often determines the target to which the attribute

applies. When applied to an entity that takes modifiers, it precedes all modifiers.

[MethodAttribute(arguments)]
public static int SomeMethod([ParameterAttribute] param1);

Multiple attributes may be specified in a single pair of square brackets or may appear in
sequential square brackets.

[FirstAttribute(arguments), SecondAttribute(arguments)]

or

[FirstAttribute(arguments)] [SecondAttribute(arguments)]

The attribute syntax also supports specifically stating what type of programmatic element
the attribute is meant to apply to; this is useful in cases where the target may be ambiguous, for
example, when applied to a return value.

[returnvalue: ReturnValueAttribute(arguments)]
ReturnType^ GetValue();

If unspecified, the preceding attribute would be applied to the method, not the return value.

Hogenson_705-2C10.fm Page 270 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 271

The Attribute Class
All attributes inherit from the System::Attribute class, either directly or indirectly. By conven-
tion, attribute classes have Attribute as a suffix. The Attribute suffix may be omitted when
referring to the name of the attribute in an attribute specification.

Attribute Parameters
Attribute constructors may take arguments. These arguments are passed in to the attribute’s
class constructor when it is applied to a program element. There are two ways to pass in the
constructor arguments: the usual way involving the order of the parameters, and a second way
in which the name of the parameter is given and the assignment operator is used to specify the
value. The two methods are illustrated here:

[SomeAttribute("AttributeValue1", 200)] // Positional parameters
[SomeAttribute(Value = "AttributeValue1", IntegralValue = 200)] // Named
parameters

Because attribute parameter evaluation occurs during startup, when the CLI program-
ming environment is not yet fully initialized, the language design imposes restrictions on the
types that may be used as attribute parameter types. Attribute parameter types are restricted to
primitive types, string handles, object handles, handles to the Type class, enum classes that are
publicly accessible (and, if nested, are nested in a publicly accessible type) as well as one-
dimensional managed arrays of these types. These restrictions are in place in order to ensure
that the runtime has access to the types when it needs them and that there are no dependen-
cies on additional external assemblies.

Some Useful Attributes
The .NET Framework contains many attributes. Let’s look at a few of them.

The Obsolete Attribute

The Obsolete attribute is one of the simplest of attributes. Try compiling the code in Listing 10-9.

Listing 10-9. Using the Obsolete Attribute

// obsolete.cpp
using namespace System;

ref class C
{
 public:
 void Method2() {}
 [Obsolete("This method is obsolete; use Method2 instead.")]
 void Method1() {}
};

Hogenson_705-2C10.fm Page 271 Thursday, October 19, 2006 8:04 AM

272 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

int main()
{
 C^ c = gcnew C();
 c->Method1();
 c->Method2();
}

If you compile this, you should get output similar to the following:

obsolete.cpp(16) : warning C4947: 'C::Method1' : marked as obsolete
 Message: 'This method is obsolete; use Method2 instead.'

As you can see, attributes can be used to give a message to anyone who uses a class or method.

The Out Attribute

The Out attribute is useful when interoperating with other .NET languages, especially C#. It allows
you to specify that a parameter is an out-only parameter, which to C# users means that its input
value is not used (so it can be uninitialized). You must use a tracking reference as a parameter
when using the OutAttribute (see Listing 10-10). Compiling with /clr:pure or /clr:safe
makes interoperating with other .NET languages much easier, as you’ll see in Chapter 12.

Listing 10-10. Using the Out Attribute

// outattribute.cpp
// compile with: /clr:safe or /clr:pure

using namespace System;
using namespace System::Runtime::InteropServices;

namespace OutAttrClass
{

 public ref class C1
 {
 public:

 void Func([Out] String^% text)
 {
 text = "testing";
 }
 };
}

Hogenson_705-2C10.fm Page 272 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 273

// consume_outattr.cs
// compile with: csc /r:outattribute.dll consume_outattr.cs

using System;
using OutAttrClass;

public class C
{

 public static void Main()
 {
 C1 c1 = new C1();
 String str = "old value";
 c1.Func(out str);
 Console.WriteLine(str);
 }
};

The output of Listing 10-10 is as follows:

testing

Serialization Attributes

Some .NET Framework features rely heavily on attributes. For example, serialization of types
as XML is primarily supported through applying certain attributes to classes and fields. The
Serializable attribute, applied to a type, enables that type to be serialized as an XML stream.
It can then be stored and re-created later by reading the XML stream and reconstructing the
class. The NonSerialized attribute is used within a serializable class to identify a field that
doesn’t participate in serialization. Both attributes are used in Listing 10-11.

Listing 10-11. Using Serialization Attributes

// serialization.cpp
#using "System.Xml.dll"

using namespace System;
using namespace System::IO;
using namespace System::Xml::Serialization;

// To participate in serialization, types must be public.
[Serializable]
public enum class SunEnum { FullSun, PartShade, Shade };

Hogenson_705-2C10.fm Page 273 Thursday, October 19, 2006 8:04 AM

274 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

[Serializable]
public enum class WaterEnum { Moist, Medium, Dry };

[Serializable]
public ref class Plant
{
 // an internal counter to determine instance IDs
 static int counter;

 // The instance ID keeps track of the plant objects. It will be
 // a different ID when the object is deserialized, so this does not need
 // to be serialized. We use the NonSerialized attribute to indicate that.
 [NonSerialized]
 int InstanceID;

 public:
 property String^ Genus;
 property String^ Species;
 property String^ Cultivar;
 property String^ CommonName;
 property SunEnum Sun;
 property WaterEnum Water;
 property int Zone;

 Plant() {}

 Plant(String^ genus, String^ species, String^ commonName,
 String^ cultivar, SunEnum sun, WaterEnum water, int zone)
 {
 Genus = genus; Species = species; Cultivar = cultivar;
 Sun = sun; Water = water; Zone = zone;
 InstanceID = counter++;
 }

 static Plant() { counter = 0; }

};

void CreateAndSerialize(String^ genus, String^ species, String^ commonName,
 String^ cultivar, SunEnum sun, WaterEnum water, int zone)
{
 Plant^ p = gcnew Plant(genus, species, commonName, cultivar, sun,
 water, zone);

Hogenson_705-2C10.fm Page 274 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 275

 // The XmlSerializer takes the Type object as a parameter.
 XmlSerializer^ serializer = gcnew XmlSerializer(Plant::typeid);
 // Create a StreamWriter object to write to a file.
 StreamWriter^ sw = gcnew StreamWriter("plants.xml");

 // Serialize causes the XML to be generated.
 serializer->Serialize(sw, p);
 sw->Close();
}

Plant^ Deserialize()
{
 Plant^ p;
 XmlSerializer^ serializer = gcnew XmlSerializer(Plant::typeid);
 // To read the file, use a FileStream object.
 FileStream^ fs = gcnew FileStream("plants.xml", FileMode::Open);
 // Deserialize and cast to object type.
 p = safe_cast<Plant^>(serializer->Deserialize(fs));
 return p;
}

int main()
{
 CreateAndSerialize("Ampelopsis", "brevipedunculata",
 "Porcelain Berry", nullptr, SunEnum::PartShade, WaterEnum::Medium,
 4);

 Deserialize();
}

Here is the plants.xml file Listing 10-11 produces:

<?xml version="1.0" encoding="utf-8"?>
<Plant xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://w
ww.w3.org/2001/XMLSchema">
 <Zone>4</Zone>
 <Water>Medium</Water>
 <Sun>PartShade</Sun>
 <Species>brevipedunculata</Species>
 <Genus>Ampelopsis</Genus>
</Plant>

This example demonstrates serialization and deserialization of a simple class. The attributes
are very simple, and because they take no arguments, the parentheses may be omitted. Only
the presence or absence of the attribute makes a difference; there is no “internal structure” to
these, the simplest of attributes.

Hogenson_705-2C10.fm Page 275 Thursday, October 19, 2006 8:04 AM

276 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

Assembly and Module Attributes
Attributes may be applied at the assembly or the module level. You’ll see this used in the
default CLR project in the Visual C++ development environment. Look at the default file
AssemblyInfo.cpp generated by Visual Studio, shown in Listing 10-12. The main purpose
of AssemblyInfo.cpp is to contain assembly-level attributes.

Listing 10-12. AssemblyInfo.cpp

#include "stdafx.h"

using namespace System;
using namespace System::Reflection;
using namespace System::Runtime::CompilerServices;
using namespace System::Runtime::InteropServices;
using namespace System::Security::Permissions;

//
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
//
[assembly:AssemblyTitleAttribute("green_dragon")];
[assembly:AssemblyDescriptionAttribute("Green Dragon")];
[assembly:AssemblyConfigurationAttribute("")];
[assembly:AssemblyCompanyAttribute("Creative Anarchy, Ltd.")];
[assembly:AssemblyProductAttribute("Wizard's Quest")];
[assembly:AssemblyCopyrightAttribute("Copyright (c) 2006")];
[assembly:AssemblyTrademarkAttribute(
 "Green Dragon is a Trademark of Creative Anarchy, Ltd.")];
[assembly:AssemblyCultureAttribute("")];

//
// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Revision and Build Numbers
// by using the '*' as shown below:

[assembly:AssemblyVersionAttribute("1.0.*")];

// Is this assembly exposed to COM?
[assembly:ComVisible(false)];

Hogenson_705-2C10.fm Page 276 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 277

// Indicate whether the program elements used comply with the Common Language
// Specification (CLS).
[assembly:CLSCompliantAttribute(true)];

// Control security settings.
[assembly:SecurityPermission(SecurityAction::RequestMinimum, UnmanagedCode = true)];

The attributes in this file are marked with assembly:, which means the attribute target is
the assembly. As you can see, you can specify a variety of assembly metadata, such as its version,
the associated product, the company that owns the assembly, and so on. To apply attributes to
a .NET module, the syntax module: is used, as follows:

[module:ComVisible(false)];

Creating Your Own Attributes
To create a custom attribute, you create a class derived from System::Attribute. Consider the
example in Listing 10-13.

Listing 10-13. Creating a Custom Attribute

// custom_attribute.cpp

using namespace System;

// This attribute is applied to custom attributes and indicates the targets for
// the attribute, among other things. In this case, we accept the defaults.
[AttributeUsageAttribute(AttributeTargets::All)]
public ref class OwnerAttribute : Attribute
{
 public:
 property String^ DevOwner;
 property String^ TestOwner;
 property String^ PMOwner;
 property String^ DocOwner;
 property DateTime^ CreationDate;

 OwnerAttribute()
 { }

 OwnerAttribute(String^ _DevOwner, String^ _TestOwner,
 String^ _PMOwner, String^ _DocOwner)
 {
 DevOwner = _DevOwner;
 TestOwner = _TestOwner;
 PMOwner = _PMOwner;
 DocOwner = _DocOwner;
 }
};

Hogenson_705-2C10.fm Page 277 Thursday, October 19, 2006 8:04 AM

278 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

// Parameter order
[Owner("John Smith", "Jane Doe", "Hubert Eliason", "Edgar Odell")]
ref class C1
{
 // etc.
};

// Using named parameters
[Owner(DevOwner="John Smith")]
ref class C2
{
 // etc.
};

Now consider the code in Listing 10-14, in which we’ve made the fields into public properties
and eliminated the constructor that takes arguments. Because the constructor is now gone, we
must use the named parameters method of setting one or more values.

Listing 10-14. Initializing an Attribute with Properties

// custom_attribute2.cpp

using namespace System;

// Specify what targets this attribute may be applied to using the
// AttributeUsageAttribute.
[AttributeUsageAttribute(AttributeTargets::Assembly | AttributeTargets::Class)]
public ref class OwnerAttribute : Attribute
{
 public:
 // Public properties can be used as named parameters.
 property String^ DevOwner;
 property String^ TestOwner;

 OwnerAttribute() { }

};

// Using named parameters
[Owner(DevOwner="John Smith")]
ref class C2
{
 // etc.
};

Hogenson_705-2C10.fm Page 278 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 279

Or, you could have both the constructor and the public properties and allow both methods.
The named parameters don’t have to be properties; public fields work just as well. The
AttributeUsageAttribute is an attribute that you use when creating your own attribute types.
This attribute is used to specify the targets your attribute may be applied to (the AttributeTargets
property), whether or not multiple copies of the attribute may be applied to a single target
(the Boolean AllowMultiple property), and whether or not the attribute is inherited by
derived classes of a class that the attribute is applied to (the Boolean Inherited property).

To do more complex programming with your attributes, you’ll need to get access to them
at runtime. To do this, you’ll use the static GetCustomAttribute method of the Attribute class,
as demonstrated in Listing 10-15. GetCustomAttribute has many overloads, which are used
to get attributes on various types of targets. The specific overload of GetCustomAttribute in
Listing 10-15 takes two Type objects as parameters: the type of the target class and the type of
the attribute you want.

Listing 10-15. An Overload of GetCustomAttribute

int main()
{
 Attribute^ attribute = Attribute::GetCustomAttribute(C1::typeid,
 OwnerAttribute::typeid);
 if (attribute != nullptr)
 {
 Console::WriteLine("{0}", attribute);
 }
}

The Type class represents a CLI type and can be used to get all kinds of information about
the type. You’ll read a bit more about this in the next section.

Reflection
Now that you’ve defined all this metadata for a type, you’ll want to access it programmatically.
Getting attributes on an object is an example of the use of reflection, a .NET Framework feature
that recalls the runtime type information (RTTI) feature in classic C++. Reflection enables you
to query the attributes of an object at runtime, as well as other metadata associated with a type,
such as the type name, inheritance relationships, properties, methods, and events of a type.
Not only can you query for information, but you can also create new types, instantiate objects,
and call methods on these objects from dynamically loaded assemblies, even if the type or
method name is known only from reflection. Reflection does not work with mixed mode (compiled
with /clr) executables; you must compile with /clr:pure or /clr:safe in order to use reflection
on an assembly. This is because reflection only knows how to load MSIL; it has no knowledge
of non-MSIL code that is present in mixed mode.

The Assembly::LoadFrom method we used in Chapter 9 is a good way to get started with
reflection. Once we’ve loaded an assembly, we can get the types in the assembly as a collection
of Type objects using the GetTypes method on the assembly class, as in Listing 10-16.

Hogenson_705-2C10.fm Page 279 Thursday, October 19, 2006 8:04 AM

280 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

Listing 10-16. Loading an Assembly and Reflecting on Types

 Assembly^ assembly = Assembly::LoadFrom("myassembly.dll");
 array<Type^>^ types = assembly->GetTypes();
 for each (Type^ t in types)
 {
 Console::WriteLine(t->ToString());
 }

The Type object is a gateway to all the information about the type, including the methods,
method parameters, properties, constructors and so on. Throughout this book, you’ve seen
multiple ways to get Type objects. If the type is accessible at compile time, you can get a type
object by specifying ::typeid on a managed type. ::typeid is a compiler-defined way of getting
the Type object.

Type^ t = String::typeid; // Get the static type.

For a type that is known only from an object, you can use the GetType method inherited
from Object, so it’s available on all managed types. The difference between GetType and typeid
is that GetType returns the dynamic type, whereas typeid evaluates to the static type. The
dynamic type may be different from the static type when, for example, a derived class object is
represented by a base class pointer. In that case, the dynamic type is the real type of the object
(e.g., Derived), but the static type is Base.

Type^ t = obj->GetType(); // Get the dynamic type.

You can also create a Type object using the text of a class name using a static method of the
Type class.

Type^ t = Type::GetType("System::DateTime");

The Type class has methods like GetAttributes, GetMembers, and GetMethods to find out
about the type, and, once the member names and parameter information is known, you can
invoke methods with the InvokeMember method (see Listing 10-17). If you need an instance, you
use the Activator::CreateInstance method (see Listing 10-18).

Listing 10-17. Reflecting with Type Methods

// reflection_general.cpp

using namespace System;
using namespace System::Reflection;

// a class to reflect upon

ref class Reflector
{
 public:

Hogenson_705-2C10.fm Page 280 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 281

 // Load an assembly, and print out the methods in the types in the
 // assembly, invoking the specified method on the specified type.
 void LoadAndReflect(String^ assemblyFileName)
 {
 Assembly^ assembly = Assembly::LoadFrom(assemblyFileName);
 array<Type^>^ types = assembly->GetTypes();
 for each (Type^ t in types)
 {
 Console::WriteLine(t->ToString());

 // Get the methods and loop over them.
 array<MethodInfo^>^ methods = t->GetMethods();
 for each (MethodInfo^ method in methods)
 {
 Console::Write(" {0} {1}(", method->ReturnType->ToString(),
 method->Name);
 // Get the parameters and loop over them.
 array<ParameterInfo^>^ params = method->GetParameters();
 // We don't use for each here because we need to use the index
 // to determine whether a comma is needed.
 for (int i = 0; i < params->Length; i++)
 {
 ParameterInfo^ param = params[i];
 Console::Write("{0} {1}",
 param->ParameterType->ToString(),
 param->Name);
 if (i < params->Length - 1)
 Console::Write(", ");
 }
 Console::WriteLine(")");
 }
 }
 }
};

int main(array<String^>^ args)
{
 Reflector^ r = gcnew Reflector();
 // Pass the assembly file name and reflect over it.
 for each (String^ s in args)
 {
 Console::WriteLine("Reflection on {0}", s);
 r->LoadAndReflect(s);
 }
}

Hogenson_705-2C10.fm Page 281 Thursday, October 19, 2006 8:04 AM

282 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

The output of Listing 10-17, when reflection_general.cpp is compiled with /clr:safe, is
as follows:

C:\code\reflection>reflection_general reflection_general.exe
Reflection on reflection_general.exe
Reflector
 System.Void LoadAndReflect(System.String assemblyFileName)
 System.Type GetType()
 System.String ToString()
 System.Boolean Equals(System.Object obj)
 System.Int32 GetHashCode()

Reflection is certainly useful for writing tools that give you information about what’s in an
assembly. It’s also useful for late binding, dealing with types about which nothing is known at
compile time, perhaps downloaded from or uploaded to a web site. Listing 10-18 provides an
example.

Listing 10-18. Reflecting on Late Binding

// reflection2.cpp

using namespace System;
using namespace System::Reflection;

// A class to reflect upon

ref class Reflector
{
 public:

 void TestDynamicCall(String^ greeting)
 {
 Console::Beep();
 Console::WriteLine(greeting);
 Console::WriteLine("Dynamic Call succeeded!");
 }

 // Load an assembly and invoke the specified method on the specified type.
 void LoadAndReflect(String^ assemblyFileName, String^ typeName,
 String^ methodName, array<Object^>^ parameterList)
 {
 // Load the assembly.
 Assembly^ assembly = Assembly::LoadFrom(assemblyFileName);

Hogenson_705-2C10.fm Page 282 Thursday, October 19, 2006 8:04 AM

C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N 283

 // Get the type.
 Type^ t= assembly->GetType(typeName);

 // Get the method of interest.
 MethodInfo^ method = t->GetMethod(methodName);

 // Create an instance of the object.
 Object^ obj = Activator::CreateInstance(t);

 // Invoke the method.
 method->Invoke(obj, parameterList);

 }
};

int main()
{
 Reflector r ;
 // Pass the assembly file name, class name, and method name, and the
 // parameter list.
 array<Object^>^ params = gcnew array<Object^> { "Hello!" };
 r.LoadAndReflect("reflection2.exe", "Reflector", "TestDynamicCall", params);
}

The output of Listing 10-18 is shown here:

Hello!
Dynamic Call succeeded!

Application Domains
In any program, all the objects and other variables exist conceptually in a single application,
but in classic C++, there is no named entity accessible to program code that represents this.
Application domains, also called app domains, represent this abstraction and are named entities in
CLI code. In the managed world, you can have multiple app domains in one application. This
is like having more than one application to work with in the same program or process. All managed
applications start off executing with a single default app domain. You can create additional app
domains and run code in them. The code will run in the same process but as if it were a separate
program entirely. This can be handy if you’re calling into some code of unknown provenance
that you fear might crash. Unless it’s the initial app domain that the process started with, if
something causes an app domain to crash, it will crash that app domain but not the overall
process. Thus, app domains provide some measure of isolation and fault tolerance. This tech-
nique is used by database and web servers running user code for this reason.

In the example in the previous section, you could load an assembly and have it start in a
new app domain instead of the default app domain. You can load many assemblies into these
app domains. You can “run an assembly” and have its main method executed. To do all this,

Hogenson_705-2C10.fm Page 283 Thursday, October 19, 2006 8:04 AM

284 C H A P T E R 1 0 ■ E X CE P T I O N S , A T T R I B U T E S , A N D R E F L E C T I O N

you use the AppDomain class. You can create an AppDomain object by calling the static
CreateDomain method.

AppDomain^ newAppDomain = AppDomain::CreateDomain("My New App Domain");

You can then execute the Load method to load an assembly into the app domain.

Assembly^ assembly = newAppDomain->Load("myassembly.dll");

Loading an assembly doesn’t execute anything in the assembly, but you can then use
reflection to get information about the assembly, or use the methods of the Assembly class to
create objects and use reflection to call methods. The AppDomain object itself has many over-
loads of the CreateInstance method that may be used to create objects. If you just want to run
a program from within your program in its own app domain, you can call the ExecuteAssembly
method.

appDomain->ExecuteAssembly("reflector2.exe");

Application domains are powerful and have low overhead, much lower than the alternative of
creating a new process.

Summary
You first saw how exception handling is done in C++/CLI, along with the .NET Framework
exceptions. Then you used the finally block, created your own exception class, and examined
what happens when exceptions are thrown in constructors. You learned how to use exceptions
not based on the Exception class and reviewed exception-handling best practices.

You then looked at the syntax for applying attributes to various targets, examined the
Attribute class, and learned about some useful CLI attributes, including the Out parameter
attribute, the Obsolete attribute, serialization attributes, and so on. You also saw how to define
your own attributes.

Finally, you examined reflection, the .NET Framework feature that allows you to query for
type information at runtime, and looked briefly at application domains.

In the next chapter, you’ll study parameterized functions and types.

Hogenson_705-2C10.fm Page 284 Thursday, October 19, 2006 8:04 AM

285

■ ■ ■

C H A P T E R 1 1

Parameterized Functions
and Types

A function or type is said to be parameterized when one or more types used in the declara-
tion and definition are left unspecified, so that users of the type can substitute the types of their
choice. Parameterized functions are functions that have a type parameter in their argument list
(or at least the return type). There are two types of parameterized types in C++/CLI: templates,
which are inherited from C++, and generics, which are the CLI parameterized type. This chapter
will explore generics in detail, look at some useful collection classes and container types, and
then look at managed templates and compare them with generics. It will also discuss when to
use generics and when to use managed templates.

The syntax for generics is quite similar to that of templates. If you’re familiar with the
template syntax, some of the description of the syntax for generics in the first few sections of
this chapter may be old hat.

Generics
The main question you may have is why generics were introduced to the C++/CLI language
when templates already existed in C++. First, the CLI already supported generics, and it was
necessary to be able to access these in C++/CLI. Second, generics are really different from
templates in fundamental ways, and hence have different uses. Once compiled, templates
cease to be parameterized types. From the point of view of the runtime, the type created from
a template is just another type. You can’t substitute a new type argument that wasn’t already
used as an argument for that template at compile time. Generics are fundamentally different
because they remain generic at runtime, so you can use types that were not known at compile
time as type arguments. However, generics, like templates, have limitations that make them
unsuitable for certain uses, as you’ll see later in this chapter. Let’s look at how to use generics.

Type Parameters
Generic functions and types are declared with the contextual keyword generic, followed by
angle brackets and a list of type parameters with the keyword typename or class. As with template
declarations, both typename and class are equivalent, even if the type argument used is not a
class. Type parameters are identifiers, and thus follow the same rules as other identifiers such

Hogenson_705-2C11.fm Page 285 Wednesday, October 18, 2006 5:09 PM

286 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

as variable names. The type parameter identifier is used as a placeholder for the type in the
function or type definition. Listing 11-1 shows a generic function declaration.

Listing 11-1. Declaring a Generic Function

generic <typename T>
void F(T t, int i, String^ s)
{
 // ...
}

This declaration creates a generic function, F, that takes three arguments, the first of which
is an unspecified type. If more than one type parameter is to be used, they appear in a comma-
separated list, as shown in Listing 11-2.

Listing 11-2. Declaring Multiple Generic Parameters

generic <typename T, typename U>
void F(T t, array<U>^ a, int i, String^ s)
{
 // ...
}

The type parameter in a generic class or function can be used anywhere a type is used, for
example, directly as a parameter or in aggregate type such as an array. The type parameter is
capable of standing in for both value types as well as reference types.

Generic Functions
Generic functions are declared, defined, and used as in Listing 11-3.

Listing 11-3. Declaring, Defining, and Using a Generic Function

// generic_functions1.cpp
using namespace System;

generic < typename T>
void GenericFunction(T t)
{
 Console::WriteLine(t);
}

int main()
{
 int i;
 // Specify the type parameter.
 GenericFunction<int>(200);

Hogenson_705-2C11.fm Page 286 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 287

 // Allow the type parameter to be
 // deduced.
 GenericFunction(400);
}

As you can see in this example, the generic function is called by using the function name,
possibly followed by angle brackets and the type arguments to be substituted for the type
parameters. I say “possibly” because if type arguments are omitted, the compiler attempts to
deduce them from the types supplied to the function as arguments. For example, if a generic
function takes one parameter and the type of that parameter is a type parameter, and if the
type of the object supplied is, say, String, the type argument is assumed to be String and may
be omitted.

The type parameter need not be an actual argument type; however, it must appear in the
argument list or as the return value. It may appear in a compound type, such as an array, as in
Listing 11-4.

Listing 11-4. Using a Generic Array As a Parameter

// generic_functions2.cpp
using namespace System;

generic < typename T>
void GenericFunction(array<T>^ array_of_t)
{
 for each (T t in array_of_t)
 {
 Console::WriteLine(t);
 }
}

int main()
{
 array<String^>^ array_of_string;

 array_of_string = gcnew array<String^>
 { "abc", "def", "ghi" };

 // Allow the type parameter to be
 // deduced.
 GenericFunction(array_of_string);
}

While deduction works on compound types, it doesn’t work if the type is used as a return
value. The compiler won’t try to deduce the generic type argument from the left side of an
assignment, or any other use of a return value. When only the return value of a generic function
is generic, or if the generic type parameter doesn’t even appear in the function signature, the
type argument must be explicitly specified, as in Listing 11-5.

Hogenson_705-2C11.fm Page 287 Wednesday, October 18, 2006 5:09 PM

288 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

Listing 11-5. Explicitly Specifying a Type Argument

// generic_return_value.cpp
using namespace System;

generic <typename T>
T f()
{
 return T();
}

int main()
{
 int i = f<int>(); // OK
 String^ s = f<String^>(); // OK
 double d = f(); // Error! Can't deduce type.
}

Generic Types
Like generic functions, the declaration of a generic type differs from a nongeneric declaration
by the appearance of the contextual keyword generic followed by the type parameter list. The
type parameter may then be used in the generic definition wherever a type is used, for example,
as a field, in a method signature as an argument type or return value, or as the type of a property, as
shown in Listing 11-6.

Listing 11-6. Using a Generic Type

// generic_class1.cpp
using namespace System;

generic <typename T>
ref class R
{
 T t;

 public:

 R() {}

 property T InnerValue
 {
 T get() { return t; }
 void set(T value) { t = value; }
 }
};

Hogenson_705-2C11.fm Page 288 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 289

int main()
{
 double d = 0.01;
 int n = 12;

 // Create an object with T equal to double.
 R<double>^ r_double = gcnew R<double>();

 // Create an object with T equal to int.
 R<int>^ r_int = gcnew R<int>();

 r_double->InnerValue = d;

 r_int->InnerValue = n;

 Console::WriteLine(r_double->InnerValue);

 Console::WriteLine(r_int->InnerValue);
}

The types created from a generic type, such as R<double> and R<int> in Listing 11-6, are
referred to as constructed types. Two or more types constructed from the same generic type are
considered to be unique, unrelated types. Thus, you cannot convert from R<double> to R<int>.

When a generic class or function is compiled, a generic version of that function or class is
inserted into the assembly or module created for that source code. At runtime, constructed
types are created on demand. Thus, it is not necessary to know at compile time all the possible
types that might be used as type parameters. However, this freedom also means that the compile-
time restrictions must be greater; otherwise, you would risk adding an incompatible type in at
runtime, which might not have all the features required. When the compiler interprets the
code for a generic class, it only allows methods, properties and other constructs to be called on
the unknown type that are certain to be available. This ensures the type safety of generic types,
since otherwise it would be possible to create a generic type that compiled but failed at runtime
when the method used was not available. This restriction imposes constraints on the code you
can use in your generic functions and types.

For example, the code in Listing 11-7 won’t compile.

Listing 11-7. Compiler Restrictions on Generic Types

// invalid_use_of_type_param.cpp

generic <typename T>
ref class G
{
 T t;

 public:

Hogenson_705-2C11.fm Page 289 Wednesday, October 18, 2006 5:09 PM

290 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

 G()
 {
 t = gcnew T("abc", 100); // Error: T may not have
 // a compatible constructor.
 t->F(); // Error: T may not have F.
 }

};

Listing 11-7 will produce the compiler error:

invalid_use_of_type_param.cpp(12) : error C3227: 'T' : cannot use 'gcnew' to
 allocate a generic type
invalid_use_of_type_param.cpp(14) : error C2039: 'F' : is not a member of
 'System::Object'
 c:\windows\microsoft.net\framework\v2.0.50727\mscorlib.dll : see
 declaration of 'System::Object'

As you can see, the first complaint is that gcnew is not available on a generic type parameter;
the second error occurs because the compiler is only willing to allow methods that are available on
System::Object.

There is a way to get around these restrictions. If you need to use specific features of a type,
you must constrain the generic so that only types with those features are allowed to be used as
type arguments. You’ll see how to do that in the section “Using Constraints.” But first, let’s look
at a typical generic class implementing a simple collection.

Generic Collections
Generics are most often used to implement collection classes. Generic collection classes are
more type-safe and can be faster than the alternative—nongeneric collection classes relying on
handles to Object to represent items in the collection. The main efficiency gain is that the retrieval
of items from the collection can be done without the use of casts, which usually requires a
dynamic type check when the type is retrieved from the collection, or maybe even when adding
elements to the collection. Also, if you are using value types, you can often avoid boxing and
unboxing entirely by using a generic collection class. In addition to efficiency gains, if you use
a generic type, you automatically force the objects in the collection to be of the appropriate
type. Since most collections hold objects of the same type (or perhaps types with a common
base type), this helps avoid programmatic errors involving adding objects of the wrong type to
the collection. In addition, having the strongly typed collection leaves no doubt as to type needed,
which is a relief to anyone who has had to try to figure out what type(s) a poorly documented,
weakly typed collection takes.

In order to use the for each statement on a generic collection, the collection must imple-
ment the IEnumerable interface, and you must implement an enumerator class to walk through
each element of the collection. Listing 11-8 shows the use of generics to create a linked list class
that supports the for each statement to iterate through the generic collection. The generic
collection implements IEnumerable, and an enumerator class implementing the IEnumerator
interface is created to allow the for each statement to work.

Hogenson_705-2C11.fm Page 290 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 291

Listing 11-8. Creating a Linked List That Can Be Traversed with for each

// generic_list.cpp
using namespace System;
using namespace System::Collections::Generic;

// ListNode represents a single element in a linked list.
generic <typename T> ref struct ListNode
{
 ListNode<T>(T t) : item(t) { }

 // The item field represents the data in the list.
 T item;
 // the next node in the list;
 ListNode<T>^ next;
};

// List represents a linked list.
generic <typename T> ref class MyList : IEnumerable<ListNode<T>^>
{
 ListNode<T>^ first;

 public:

 property bool changed;

 // Add an item to the end of the list.
 void Add(T t)
 {
 changed = true;
 if (first == nullptr)
 {
 first = gcnew ListNode<T>(t);
 }
 else
 {
 // Find the end.
 ListNode<T>^ node = first;
 while (node->next != nullptr)
 {
 node = node->next;
 }
 node->next = gcnew ListNode<T>(t);
 }
 }

Hogenson_705-2C11.fm Page 291 Wednesday, October 18, 2006 5:09 PM

292 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

 // Return true if the object was removed,
 // false if it was not found.
 bool Remove(T t)
 {
 changed = true;
 if (first == nullptr)
 return false;
 if (first->item->Equals(t))
 {
 // Remove first from list by
 // resetting first.
 first = first->next;
 return true;
 }
 ListNode<T>^ node = first;
 while(node->next != nullptr)
 {
 if (node->next->item->Equals(t))
 {
 // Remove next from list by
 // leapfrogging it.
 node->next = node->next->next;
 return true;
 }
 node = node->next;
 }
 return false;
 }

 property ListNode<T>^ First
 {
 ListNode<T>^ get()
 {
 return first;
 }
 }

 private:
 virtual System::Collections::IEnumerator^ GetEnumerator_NG() sealed
 = System::Collections::IEnumerable::GetEnumerator
 {
 return GetEnumerator();
 }

Hogenson_705-2C11.fm Page 292 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 293

 virtual IEnumerator<ListNode<T>^>^ GetEnumerator_G() sealed
 = IEnumerable<ListNode<T>^>::GetEnumerator
 {
 return GetEnumerator();
 }

 public:
 IEnumerator<ListNode<T>^>^ GetEnumerator()
 {
 ListEnumerator<T>^ enumerator = gcnew ListEnumerator<T>(this);
 return (IEnumerator<ListNode<T>^>^) enumerator;
 }

 // ListEnumerator is a struct that walks the list, pointing
 // to each element in turn.
 generic <typename T> ref struct ListEnumerator : IEnumerator<ListNode<T>^>
 {
 ListNode<T>^ current;
 MyList<T>^ theList;
 bool beginning;

 ListEnumerator<T>(MyList<T>^ list) : theList(list), beginning(true)
 {
 theList->changed = false;
 }

 private:
 virtual property Object^ Current_NG
 {
 Object^ get() sealed =
 System::Collections::IEnumerator::Current::get
 {
 return (Object^) Current;
 }
 }

 virtual property ListNode<T>^ Current_G
 {
 ListNode<T>^ get() sealed = IEnumerator<ListNode<T>^>::Current::get
 {
 return Current;
 }
 }

 public:

Hogenson_705-2C11.fm Page 293 Wednesday, October 18, 2006 5:09 PM

294 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

 property ListNode<T>^ Current
 {
 ListNode<T>^ get()
 {
 if (theList->changed)
 throw gcnew InvalidOperationException();
 return current;
 }
 }

 virtual bool MoveNext()
 {
 if (theList->changed)
 throw gcnew InvalidOperationException();
 beginning = false;
 if (current != nullptr)
 {
 current = current->next;
 }
 else
 current = theList->First;

 if (current != nullptr)
 return true;
 else
 return false;
 }

 virtual void Reset()
 {
 theList->changed = false;
 current = theList->First;
 }

 ~ListEnumerator() {}

 }; // end of ListEnumerator
}; // end of MyList

int main()
{
 MyList<int>^ int_list = gcnew MyList<int>();

 int_list->Add(10);
 int_list->Add(100);
 int_list->Add(1000);
 int_list->Add(100000);

Hogenson_705-2C11.fm Page 294 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 295

 int_list->Add(500);
 int_list->Remove(10);
 int_list->Remove(1000);
 int_list->Remove(500);
 int_list->Add(50);

 // Iterate through the list using the for each statement,
 // displaying each member of the list at the console.
 for each (ListNode<int>^ node in int_list)
 {
 Console::WriteLine(node->item);
 // int_list->Remove(50); // danger: modifying the collection
 }
}

The output of Listing 11-8 is as follows:

100
100000
50

There are a few points to notice about Listing 11-8. Recall the IEnumerable implementation
on a deck of cards in Chapter 9 (Listing 9-15). In that example, we chose to implement the
nongeneric IEnumerable. Implementing the generic IEnumerable<T> adds an additional layer of
complexity because IEnumerable<T> also inherits from IEnumerable. That means MyList must
implement two different versions of GetEnumerator: one for the generic IEnumerable and one
for the nongeneric interface. This is done via explicit interface implementation. In fact, just as
in Listing 9-15, we make the interface implementation methods private and define a public
method that for each actually uses and that the private interface implementation functions
call. This helps improve performance since the enumeration does not require a virtual func-
tion call.

Note also that we had to add a destructor to the ListEnumerator class. Without the destructor,
the compiler complains that we did not implement IDisposable::Dispose. This is because
IEnumerator<T> also inherits from IDisposable (the nongeneric IEnumerator does not). A C++/CLI
destructor on a managed type is emitted as the Dispose method, as discussed in Chapter 6.

Finally, we have added a Boolean field in MyList that detects whether MyList is changed
during the enumeration. As you may recall, in Listing 9-15, we made a copy of the card deck
and used it in the enumerator class. With this version, you avoid the copy, which could be
expensive for a large list, and instead generate an exception when the list is modified. To demon-
strate the exception, try uncommenting the line calling the Remove method during the iteration.
If we permitted the item to be successfully removed during the iteration, the collection would
be considered corrupted, and the enumeration would produce undefined results. The behavior of
for each would not be as expected and would be very confusing for consumers of the type.
Unless you create a working copy of the collection, you should always implement some code
that checks that the type has not been modified.

Hogenson_705-2C11.fm Page 295 Wednesday, October 18, 2006 5:09 PM

296 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

Using Constraints
The restriction noted previously on the use of methods, properties, and other constructs on a
type parameter would severely limit the usefulness of generic types, were it not for the ability
to get around the restriction by using constraints. Constraints are specific requirements put on
a type parameter that limit, or constrain, the types that may be used as type arguments. Essen-
tially, the constraints limit the possible type arguments to a subset of all possible types. By
imposing constraints, you may write generic code that uses the methods, properties, and other
constructs supported by the constrained subset of types. There are several types of constraints:
interface constraints, class constraints, the gcnew constraint, and constraints that limit the type
arguments to either reference types or value types.

Interface Constraints
Interface constraints indicate that the type parameter must implement the specified interface
or interfaces. When an interface constraint is applied to the type parameter, you may use
methods of that interface in your generic type definition (see Listing 11-9).

Listing 11-9. Specifying Interface Constraints

// interface_constraint.cpp

interface class I
{
 void f();
};

// The constraint is introduced with the where keyword
// and requires that T inherit from I.
generic <typename T> where T : I
ref class R
{
 T t;

 public:
 R(T t_in) : t(t_in)
 {
 // Call the method on I.
 // This code would not compile without
 // the constraint.
 t->f();
 }
};

Hogenson_705-2C11.fm Page 296 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 297

ref class C : I
{
 public:
 virtual void f()
 {
 // ...
 }
};

int main()
{
 R<C^>^ r = gcnew R<C^>(gcnew C());
}

Class Constraints
A class constraint on a type parameter indicates that the type used must be derived from a
specified type. When you specify a class constraint, you may then be sure that the members on
that type are available, and you may use those members in the definition of the generic type
(see Listing 11-10).

Listing 11-10. Specifying Class Constraints

// class_constraint.cpp
using namespace System;
ref class B
{
 public:
 virtual void f() {}
};

generic <typename T> where T : B
ref class G
{
 T t;

 public:
 G(T t_in) : t(t_in)
 {
 // For this example, C::f is
 // called.
 t->f();
 }
};

Hogenson_705-2C11.fm Page 297 Wednesday, October 18, 2006 5:09 PM

298 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

ref class C : B
{
 public:
 virtual void f() override
 {
 Console::WriteLine("C::f");
 }
};

int main()
{
 G<C^>^ r = gcnew G<C^>(gcnew C());
}

Here is the output of Listing 11-10:

C::f

Any class in the hierarchy under C can be used as the type argument for the generic type G
in Listing 11-10.

There are other types of constraints, but before you proceed to them, let’s look at reference
types and value types in generic types and functions, which will give a better idea of why the
other constraint types are needed.

Reference Types and Value Types As Type Parameters
Although the type parameter is written without a handle or any other adornment, when a type
argument is supplied, it will either be a handle to a reference type or a value type. The same
generic collection will work with both with the same syntax. The same constructs are inter-
preted differently depending on whether the type parameter is a value type or a reference type.
Thus, the MyList class shown in Listing 11-8 works as well with a handle to a ref class, as
demonstrated in Listing 11-11, as with the value type int used in Listing 11-8.

Listing 11-11. Using a Generic List for Strings

ref class R
{
 String^ name;

 public:

 R(String^ n) : name(n) {}

Hogenson_705-2C11.fm Page 298 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 299

 virtual String^ ToString() override
 {
 return name;
 }
};

int main()
{
 MyList<R^>^ R_list = gcnew MyList<R^>();

 R_list->Add(gcnew R("test1"));
 R_list->Add(gcnew R("test2"));
 R_list->Add(gcnew R("test3"));

 for each (ListNode<R^>^ node in R_list)
 {
 Console::WriteLine(node->item);
 }
}

You cannot use a naked reference type (as opposed to a handle type) as a type parameter:

 List<R>^ R_list = gcnew List<R>(); // illegal

You can make it work by either making R a value type or using a handle to R as the generic
type argument.

When writing a generic class that can take either value types or handles, you need to
understand something that may be surprising, especially if you’re familiar with templates. And
that is that regardless of the type argument, you code your generic class with the assumption
that the unknown type is a handle. For example, you use the -> operator vs. the . operator for
member access, as in Listing 11-12. You wouldn’t expect to be able to do this with a pointer or
a nonpointer type with the same template class, because different syntax would be required for
each, but for generics, the unknown type is treated as if it were a handle, even if the type substi-
tuted is a nonhandle type. If the type argument is a value type, you could read the code as if the
type parameter were a boxed value type. The actual implementation of the generic doesn’t
incur the overhead of boxing the value type unless a real boxing operation is needed, for example,
if the type parameter is converted to Object^ or a method on Object is accessed.

Listing 11-12. Assuming an Unknown Type Is a Handle

// generic_reference_syntax.cpp

interface class I { void F(); };

value struct V : I { virtual void F() {} };

ref struct R : I { virtual void F() {} };

Hogenson_705-2C11.fm Page 299 Wednesday, October 18, 2006 5:09 PM

300 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

generic <typename T> where T : I
ref class G
{
 T t;

 public:
 G(T t)
 {
 // The handle syntax -> is used
 // even though T could be a value type.
 t->F();
 }
};

int main()
{
 V v;
 R^ r = gcnew R();
 G<V>^ gv = gcnew G<V>(v);
 G<R^>^ gr = gcnew G<R^>(r);
}

You might then wonder how you code for situations such as creating objects of the type
parameter type inside the generic function or type. If you are to treat the unknown type as a
handle, can you use gcnew to create the object, and if so, how? In fact, using gcnew is not allowed
in a generic type without specifying a constraint on the type parameter that only allows types
that support a default constructor to be used. These could be reference types or value types,
even though normally you wouldn’t use gcnew to create objects of value type.

The gcnew Constraint
The gcnew constraint indicates that the type parameter must have a default constructor that
takes no arguments. The constraint is used if you need to use gcnew on the type parameter in
the definition of the generic type. The use of gcnew on an unknown type is limited to the default
constructor with no arguments. The gcnew constraint is used with an empty pair of parentheses
as a reminder that only the default constructor is allowed (see Listing 11-13). Types that are
used must have a public default constructor, either an implicit one (as for all value types) or an
explicitly declared default constructor with public accessibility.

Listing 11-13. Using the gcnew Constraint

// generic_gcnew.cpp
using namespace System;

generic <typename T> where T: gcnew()
T CreateInstance()
{

Hogenson_705-2C11.fm Page 300 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 301

 return gcnew T();
}

ref class R
{
 public:

 R() { }
};

int main()
{
 int i = CreateInstance<int>();
 R^ r = CreateInstance<R^>();
}

The gcnew constraint is useful, but you cannot specify a specific constructor other than the
default constructor.

Value Type Constraints
Unconstrained type parameters can be either reference types or value types, and the same
constructs will just work appropriately for either. When an assignment occurs in the generic
type, if it’s a value type, the value is copied, but if it’s a reference type, the reference, not the
value, is copied. In some cases, however, you will want to write an algorithm that assumes the
semantics of one or the other. Perhaps your algorithm copies and then destroys or destructively
modifies objects so it either wouldn’t work or would corrupt any reference types that are used.
It is possible to constrain a type parameter such that it may only be a value type, or only a refer-
ence type, if needed. The syntax is show in Listing 11-14.

Listing 11-14. Using Value Type Constraints

// valuetype_constraint.cpp

generic <typename T>
where T : value class
ref class G
{ /* ... */ };

As an example, suppose the List generic class removes nodes. The question you face when
creating a collection class that deletes nodes is what to do with the objects when the node is
deleted. If the collection uses a reference type as an argument, and it merely references the
objects, but doesn’t own them, it’s fine to remove the references in the nodes. If the collection
is considered to own the object, it might need to delete the object to make sure the destructor
is called, perhaps to free up some scarce resource such as a database connection. But if you do
that, you have to worry about whether any other references to that object are being held so that
you don’t destroy an object that’s being used. If the objects in the nodes are value types, they
are automatically owned by the collection, and they will get destroyed when the containing

Hogenson_705-2C11.fm Page 301 Wednesday, October 18, 2006 5:09 PM

302 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

node is destroyed as part of the natural semantics of value types. Since they’re value types, you
never have to worry about another object holding a reference that is now invalid. The bottom
line is that you can write your class to rely on the natural semantics of value types when you
declare a value type constraint. If you don’t, you have to write your class to handle both refer-
ence types and value types, and you have to deal with the question of object ownership.

As an example, take the MyList generic class used previously and change the Remove method to
delete objects upon removal, as in Listing 11-15.

Listing 11-15. A Collection That Owns the Objects and Deletes Them When Removed

 bool Remove(T t)
 {
 changed = true;
 if (first == nullptr)
 return false;
 if (first->item->Equals(t))
 {
 // Remove first from list by
 // resetting first.
 first = first->next;
 return true;
 }
 ListNode<T>^ node = first;
 while(node->next != nullptr)
 {
 if (node->next->item->Equals(t))
 {
 delete node->next->item;
 // Remove next from list by
 // leapfrogging it.
 node->next = node->next->next;
 return true;
 }
 node = node->next;
 }
 return false;
 }

You’d want to prevent the code in Listing 11-15 from being used with a reference type so
that you aren’t deleting objects for which references might be held in some other part of the
program. You would add the constraint to the MyList class and the ListNode class as shown in
Listing 11-16. Note that, as discussed previously, you still retain the handle syntax even though
you are constraining the type argument to a value type. (It’s not a problem using delete on a
value type. From the perspective of the generic class, the value type is boxed as an object and
can be deleted like any object.)

Hogenson_705-2C11.fm Page 302 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 303

Listing 11-16. Adding Constraints to MyList and ListNode

// ListNode represents a single element in a linked list.
generic <typename T>
where T : value class
ref struct ListNode
{
 // same as before
};

generic <typename T>
where T : value class
ref class MyList : IEnumerable<ListNode<T>^>
{
 // same as before
};

Reference Type Constraints
Similarly, reference type constraints are specified using ref class in the constraint clause, as
in Listing 11-17.

Listing 11-17. Using ref class

// refclass_constraint.cpp

generic <typename Z>
 where Z : ref class
ref class G
{ /* ... */ }

As an example of when this might be useful, consider a class that uses a lot of assignment
expressions. You might want to create a version optimized for reference semantics and one
that is optimized for value semantics. The two versions would be different types with unique
names, for example Gref and Gvalue.

Multiple Constraints
You can use multiple constraints on a single type parameter or on different type parameters.
Listing 11-18 shows some examples of the syntax.

Listing 11-18. Using Multiple Constraints

// generic_multiple_constraints.cpp
using namespace System;

interface class I;
ref class C;

Hogenson_705-2C11.fm Page 303 Wednesday, October 18, 2006 5:09 PM

304 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

// T must have a public default constructor and
// T must inherit from C and
// T must implement I.
generic <class T>
where T : gcnew(), C, I
void F(T t)
{
 // ...
}

interface class IKey;

// Use multiple where clauses to specify
// constraints for multiple type parameters.
generic <typename Key, typename Value>
where Key : IKey
where Value : value class
ref class Dictionary
{
 // ...
};

The Dictionary class requires keys to implement IKey and the values to be value types. The
.NET Framework BCL Dictionary class doesn’t have these restrictions. You’ll learn more about
the ArrayList and Dictionary collection classes in the next section.

.NET Framework Container Types
Containers, or collection classes, are types that hold objects, provide ways to access them, and
may be used in a variety of algorithms. Lists, queues, stacks, trees, and so on are all examples of
container classes. The .NET Framework container classes are in the namespaces
System::Collections and System::Collections::Generic.

Generic vs. Nongeneric Container Classes
The .NET Framework provides two types of container classes: the nongeneric container classes
that hold references to Object and the generic collection classes. The so-called weakly typed
collections were made available in the 1.0 version of the .NET Framework, and are still available in
later versions. The generic collections became available in .NET Framework 2.0 with Visual
Studio 2005. The generic collections are strongly typed, meaning that the objects in the collec-
tion are restricted to a specific type, and compilers will detect any attempt to insert the
incorrect type into the container.

In a weakly typed collection class, it is the responsibility of the user to ensure that objects
inserted into the collection are of the appropriate type. Usually, objects are cast dynamically
back to the appropriate type when they are retrieved from the collection. If objects of the
wrong type are inserted, they will produce a runtime InvalidCastException when retrieved.

Hogenson_705-2C11.fm Page 304 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 305

Using the Collection Class Interfaces
The .NET Framework collection classes have associated interfaces. It is a good idea to use the
interfaces instead of the types directly. That way, code written for one collection type will work
with other related collection types that implement the same interface. Collection types use
different data structures and algorithms, but often share the basic interface. For example, an
array-like class could be implemented as an array or as a linked list. Whether one or the other
was more efficient would depend on how it is used. If you use the interface instead of the specific
collection type, your algorithms and functions that take the interfaces will be independent of
implementation, so you can easily switch to another implementation if you find that it is more
efficient, and you can reuse code on a wider variety of collection types.

ArrayList
As you saw in Chapter 5, the ArrayList is a collection class that combines array-like access to
objects with list-like functionality such as adding, removing, and inserting items. An array list
is implemented like an array, so access to elements of the list is a O(1) process, just as is an
array lookup.

There are two versions of the ArrayList class. One of them is a weakly typed collection
(using handles to Object as the array element type), and the other is a generic, strongly typed
collection. If all your elements are of the same type, the generic collection should be used since
you will enjoy compile-time type enforcement and improved performance as described previ-
ously. If your objects are not of the same type, you could create a generic collection class in
which the type parameter is constrained to an interface or common base type of the types you
want to store. If there is no common interface or base, you could use the weakly typed, nongeneric
ArrayList, as in Listing 11-19. Note the use of the object handle in the for each statement.

Listing 11-19. Using a Weakly Typed, Nongeneric ArrayList

// arraylist.cpp
using namespace System;
using namespace System::Collections;

int main()
{
 ArrayList^ array_list = gcnew ArrayList();

 array_list->Add(1);

 array_list->Add("test");

 // Iterate using the for each operator.
 for each (Object^ o in array_list)
 {
 Console::WriteLine(o->ToString());
 }

Hogenson_705-2C11.fm Page 305 Wednesday, October 18, 2006 5:09 PM

306 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

 // Iterate using indexing.

 for (int i = 0; i < array_list->Count; i++)
 {
 Console::WriteLine("{0} {1}", i, array_list[i]);
 }
}

Often, code that uses the generic collections, such as ArrayList, will use a cast when objects
are retrieved from the collection. If the cast fails, InvalidCastException is thrown, and Listing 11-20
traps this.

Listing 11-20. Trapping an Invalid Cast Exception

// casting_from_object.cpp
using namespace System;
using namespace System::Collections;

ref class Book
{
 public:
 Book()
 { }
 Book(String^ _title) { Title = _title; }
 property String^ Title;
};

int main()
{
 ArrayList^ theList = gcnew ArrayList();

 theList->Add(gcnew Book("Of Mice and Men"));

 // Use a cast to retrive an object from the list
 // and convert to the appropriate type.
 Book^ book = safe_cast<Book^>(theList[0]);

 Console::WriteLine("OK. The object was retrieved and the title is "
 + book->Title);

 // Now try putting an object of the wrong type
 // in the list and retrieving it using the same
 // method.

Hogenson_705-2C11.fm Page 306 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 307

 theList->Add(gcnew String("bad data"));
 try
 {
 book = safe_cast<Book^>(theList[1]);
 }
 catch(InvalidCastException^ e)
 {
 Console::WriteLine("An object of the wrong type was put on the list.");
 }
}

Not only is the cast a performance hit, but also, as discussed in Chapter 10, it’s inefficient
to rely on a runtime exception to detect an incorrect use of the collection. To push this error to
compile time, use the ArrayList: the List<T> generic type, or better yet, the IList<T> generic
interface.

The generic List<T>, when used with a reference type, requires the type argument to be a
handle type. In for each statements, the type argument is used directly, rather than a handle
to Object, as is used when iterating the weakly typed collection (see Listing 11-21).

Listing 11-21. Iterating with for each and with an Index

// list_generic.cpp
using namespace System;
using namespace System::Collections::Generic;

int main()
{
 List<String^>^ list = gcnew List<String^>();
 // or IList<String^>^ list = gcnew List<String^>();

 list->Add("apple");
 list->Add("banana");

 // Iterate using the for each operator.
 for each (String^ s in list)
 {
 Console::WriteLine(s);
 }

 // Iterate using indexing.

 for (int i = 0; i < list->Count; i++)
 {
 Console::WriteLine("{0} {1}", i, list[i]);
 }
}

Hogenson_705-2C11.fm Page 307 Wednesday, October 18, 2006 5:09 PM

308 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

The output of Listing 11-21 is as follows:

apple
banana
0 apple
1 banana

In addition to the generic List, there is a generic IList interface that can be used, as
mentioned in the comment.

Let’s look at one more collection class before moving on to managed templates.

Dictionaries
Dictionaries provide associative array functionality based on key-value pairs. An associative
array is an array in which one type, the key, is used to access a particular stored value, often of
a different type. All the keys are usually the same type, and all the values are normally the same
type as well. The name, Dictionary, suggests an analogy. Using a real dictionary, you look up a
definition (value) using the word as the key. The generic Dictionary<TKey,TValue> class may
be used directly and is probably the best bet for the associative array-like functionality. We’ll
also use the IDictionary interface in Listing 11-22.

Listing 11-22. Using a Dictionary

// dictionary.cpp
using namespace System;
using namespace System::Collections::Generic;

int main()
{
 IDictionary<String^, String^>^ dict;
 dict = gcnew Dictionary<String^, String^>();

 // The add method takes the key and the value.
 dict->Add("hat", "head adornment");
 dict->Add("hot", "at a high temperature");
 dict->Add("hit", "to strike");

 // Use the KeyValuePair generic class when using the
 // for each statement.
 for each (KeyValuePair<String^, String^>^ pair in dict)
 {
 Console::WriteLine(" {0}: {1}", pair->Key, pair->Value);
 }

Hogenson_705-2C11.fm Page 308 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 309

 // The remove method takes the key as an argument.
 dict->Remove("hat");

 // Use the KeyValuePair generic class when using the
 // for each statement.
 for each (KeyValuePair<String^, String^>^ pair in dict)
 {
 Console::WriteLine(" {0}: {1}", pair->Key, pair->Value);
 }
}

The output of Listing 11-22 is as follows:

 hat: head adornment
 hot: at a high temperature
 hit: to strike
 hot: at a high temperature
 hit: to strike

When using the for each statement to iterate over a dictionary collection, use the
KeyValuePair generic class as shown in the previous example.

If the key is not found, a KeyNotFoundException is thrown. If an attempt is made to add a
duplicate key, an ArgumentException is thrown by the Add method.

Managed Templates
C++/CLI supports templates on managed types, generally known as managed templates. Managed
templates differ from generics in several ways, although the syntax is very similar and both are
parameterized types. The main difference is the templates are resolved at compile time, and so
are considered to be fully specified types by the runtime, whereas generics remain “generic” at
runtime as well. Another way of putting this is that for templates, the parameterization is handled
by the compiler, whereas with generics, the parameterization is handled by the runtime. In this
section, you’ll see the implications of this difference in some detail, but before you get too far
into the comparison of managed templates and generics, let’s look at the basics of using templates
on managed types.

The first example, Listing 11-23, shows a simple template class that is a ref class. Note the
syntax that puts the template keyword first, followed by the template argument list, then any
attributes, if any, and then the ref class keyword. Let’s put the managed template declaration
in a header file. The class template declares a member object and exposes it through a property,
InnerObject, that in this simple example behaves just like a trivial property, but allows you to
see how you use the type parameter in a managed type declaration.

Hogenson_705-2C11.fm Page 309 Wednesday, October 18, 2006 5:09 PM

310 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

Listing 11-23. A Simple ref class Template

// managed_template.h

template <typename T>
public ref class CTemplate
{
 T m_obj;

 public:

 CTemplate(T obj) { m_obj = obj; }

 property T InnerObject
 {
 T get() { return m_obj; }
 void set(T obj) { m_obj = obj; }
 }

};

The template is instantiated just as we would normally instantiate a native template class.
In Listing 11-24, we instantiate the type with an int and, separately, a String handle.

Listing 11-24. Using a Template with Different Types

// managed_templates.cpp

#include "managed_template.h"

using namespace System;

int main()
{
 CTemplate<int>^ ct_int;
 CTemplate<String^>^ ct_string;

 ct_int = gcnew CTemplate<int>(55);
 ct_string = gcnew CTemplate<String^>("test");

 Console::WriteLine("{0} ", ct_int->InnerObject);
 Console::WriteLine("{0} ", ct_string->InnerObject);

}

Hogenson_705-2C11.fm Page 310 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 311

In a similar manner, you can use all the other features of templates on your managed reference
types, interfaces, and value types. Some managed types cannot be templates: you cannot declare
template enum classes or delegate types. Otherwise, you can use nontype template parameters,
you can use template functions, you can use template arguments, partial specialization, and so on.
However, let’s perform a little experiment with the template class in Listing 11-24 to illustrate an
important limitation of managed templates: let’s compile the template in two different assem-
blies. We’ll also create some functions that take arguments of the specialized template types,
so you can see what happens when we try to pass these template class types over an assembly
boundary. We’ll create two assemblies that include the managed template header file. One,
compiled from assembly1.cpp (see Listing 11-25), will expose a class, CBridge, with a public
static function that takes the template as a parameter. First, compile assembly1.cpp as an
executable, then compile it as a library; and compile assembly2.cpp, which references
assembly1.dll and tries to call the public static method CBridge::F, passing assembly2.cpp’s
instantiation of the managed template.

Listing 11-25. An Assembly That Uses a Template Type in Its Public Interface

// assembly1.cpp

#include "managed_template.h"

using namespace System;

public ref class CBridge
{
 public:

 static void F(CTemplate<int>^ ct_int)
 {
 Console::WriteLine("{0} ", ct_int->InnerObject);
 }
};

int main()
{
 CTemplate<int>^ ct_int;
 ct_int = gcnew CTemplate<int>(55);
 CBridge::F(ct_int);
}

Compile the code in Listing 11-25 as a DLL:

cl /clr /LD assembly2.cpp

Listing 11-26 is assembly2.cpp.

Hogenson_705-2C11.fm Page 311 Wednesday, October 18, 2006 5:09 PM

312 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

Listing 11-26. Trying to Use the Template in Another Assembly

// assembly2.cpp

#include "managed_template.h"

#using "assembly1.dll"

int main()
{
 CTemplate<int>^ ctemplate_int = gcnew CTemplate<int>(67);

 CBridge^ bridge = gcnew CBridge();
 bridge->F(ctemplate_int);
}

If we try to compile assembly2.cpp in Listing 11-26 as follows:

cl /clr assembly2.cpp

we’ll get an error similar to the following:

assembly2.cpp
assembly2.cpp(12) : error C2664: 'CBridge::F' : cannot convert parameter 1 from
'CTemplate<T> ^' to 'CTemplate<int> ^'
 with
 [
 T=int
]
 No user-defined-conversion operator available, or
 Types pointed to are unrelated; conversion requires reinterpret_cast,
C-style cast or function-style cast

What’s the problem? You can plainly see that CTemplate<T> with T = int is the same as
CTemplate<int>, right? Well, no. The truth of the matter is that the CTemplate<int> compiled
into the first assembly is not considered the same type as the CTemplate<int> compiled into the
second assembly, because the runtime sees them as two different types. The compiler won’t let
you compile code that tries to do this.

The bottom line is that you should confine your template code to intra-assembly code.
Don’t expose your template classes as public classes. If you want a parameterized type to use
in the public classes and methods of an assembly, use a generic type. You may often find your-
self defining a generic interface to a template class. You can then use the generic interface over
the assembly boundary, and use the template classes freely within each assembly. Listing 11-27
shows how you would declare such a thing.

Hogenson_705-2C11.fm Page 312 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 313

Listing 11-27. Declaring a Generic Interface

// generic_interface.cpp
// Declare your generic interfaces and compile to a DLL.
// Reference the compiled assembly using #using.
// Do not reference the source as an included file.

generic <typename T>
public interface class IGInterface
{
 property T InnerObject;
};

Unlike the generic interface, the template is declared and defined in a header file, as
shown in Listing 11-28.

Listing 11-28. Declaring a Generic Interface for a Template

// template_with_generic_interface.h

#using "generic_interface.dll"

template <typename T>
ref class CTemplate : IGInterface<T>
{
 T m_obj;

 public:

 CTemplate(T obj) { m_obj = obj; }

 virtual property T InnerObject
 {
 T get() { return m_obj; }
 void set(T obj) { m_obj = obj; }
 }

};

Now the CBridge::F function can be rewritten to use the generic interface handle instead
of the template class directly (see Listing 11-29).

Hogenson_705-2C11.fm Page 313 Wednesday, October 18, 2006 5:09 PM

314 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

Listing 11-29. Using a Generic Interface Instead of a Template

// template_with_generic_interface.cpp

#include "template_with_generic_interface.h"

using namespace System;

public ref class CBridge
{
 public:

 static void F(IGInterface<int>^ ct_int)
 {
 Console::WriteLine("{0} ", ct_int->InnerObject);
 }
};

And the second assembly can now call the CBridge::F function. It will include the template
using #include and reference the generic interface (as well as the other assembly containing
CBridge::F) with #using, as in Listing 11-30.

Listing 11-30. Successfully Using a Template from Another Assembly

// assembly2_with_generic.cpp

#using "generic_interface.dll"
#using "template_with_generic_interface.dll"

#include "template_with_generic_interface.h"

int main()
{
 CTemplate<int>^ ctemplate_int = gcnew CTemplate<int>(67);

 CBridge^ bridge = gcnew CBridge();
 bridge->F(ctemplate_int);
}

The conversion from the template to the generic parameter of F is implicit, since it amounts to
a simple derived class to base interface conversion.

The presence of both generics and templates in the language can be confusing. If you
remember nothing else, remember that templates are good for use within assemblies, but that
generics should be used for any interassembly functionality, and also for any cross-language
functionality. The language you are interoperating with must also support consuming generics,
which VB, C# and J# do.

You might also wonder, Why use managed templates at all? There are some limitations to
the usefulness of generics, especially for those who are used to the full expressive power of
templates in C++. Many features of templates are not available with generics, as described here:

Hogenson_705-2C11.fm Page 314 Wednesday, October 18, 2006 5:09 PM

C H AP T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S 315

• Templates support nontype template parameters; generics don’t.

• Templates support specialization and partial specialization; generics don’t.

• Templates work better with mathematical operations; unconstrained generics don’t
allow the use of mathematical operators on the unknown type parameter, and there are
no viable constraints for families of primitive types (e.g., int, double, etc.).

• Generic types cannot inherit from the type parameter, as is possible with templates.

• Generics have no equivalent of template metaprogramming, that is, using template
expansion by the compiler to perform operations.

• Templates are compiled at the time of instantiation; generics are compiled at the point
of definition.

The last point bears some further explanation, since it has far-reaching implications in
terms of what code is allowed in a generic class. The basic rule is that a generic class may not
include any code that is not ensured to compile with any type argument. Think about the fact
that the compiler will not even know what types might eventually be used as type arguments.
You could compile G<T> today and deploy it somewhere, and years later someone could instan-
tiate it with a type that never even existed when G<T> was compiled. This would not be possible
if just any code were allowed to compile. That’s the reason why constraints are so important
in generic classes. In order to call a method on a type parameter, the compiler must be certain
that that method is in fact available for every allowable type argument that may be used. The
runtime must also be equally forceful in insisting that only types that meet the constraints are
allowed to be used as type arguments. Contrast this with templates, in which you can make all
kinds of unstated assumptions about the type (such as assuming the type has certain methods,
operators, and so on) that might be used as a type parameter, without any worries because you
know that when someone tries to instantiate your template, the compiler will check the template
with the actual type that is being used. You don’t have to constrain the template type parameter
because the type never remains unknown at runtime.

To drive home the point, consider a template class that works with mathematical entities
and assumes the existence of a + operator on the type, as in Listing 11-31.

Listing 11-31. Assuming the Existence of an Operator

template <class T>
ref class A
{
 // assumes T supports the + operator
 T add(T t1, T t2) { return t1 + t2; }
};

If you want a generic class that does this, you probably need to define an interface
constraint and add that interface to any types that are to be used as a type argument, as in
Listing 11-32.

Hogenson_705-2C11.fm Page 315 Wednesday, October 18, 2006 5:09 PM

316 C H A P T E R 1 1 ■ P A R A M E T E R I Z E D F U N C T I O N S A N D T Y P E S

Listing 11-32. Using a Constraint to Guarantee the Existence of an Operator

interface class IAddition
{
 static IAddition^ operator+(IAddition^, IAddition^);
};

generic <typename T> where T : IAddition
ref class G
{
 T add(T t1, T t2) { return t1 + t2; }
};

The problems arise when you try to use the primitive types, since, although they might have
a + operator, they don’t implement IAddition. Using templates, you can just use the + operator
without the constraint, and if someone tries to instantiate the template with a type that is
incompatible, it simply won’t compile, but the template would work with int as well as with
your types that define the + operator. There are certainly other examples of when you would
want to use templates instead of generics. It is a trade-off, since the additional expressive
power of templates does come at the cost of only having access to the templates with a single
assembly, apart from generic interfaces you might set up for interassembly communication.

On the other hand, generics have many advantages when programming in the CLI environ-
ment. Advantages of generics are significantly greater runtime flexibility, since you can use
types not envisioned at compile time; the ability to use generics across assembly boundaries;
and the ability to interoperate with other CLI languages.

Summary
In this chapter, you looked at the two major language features supporting parameterized types:
generics and templates. You saw how to declare, define, and use generic functions and types,
and how to use constraints to allow generic code to use specific features of a specified subset
of types. You also looked at a variety of .NET Framework collection classes, including ArrayList
and Dictionary, and their associated helper classes. You learned the differences between the
generic and nongeneric collection classes and when to use them, and you also learned another
way to enumerate over collections using enumerators and the for each statement. Finally, you
looked at managed templates and the differences between them and generics and you saw
when to use one or the other.

In the next and final chapter, I’ll cover how to use C++/CLI to interoperate with other tech-
nologies, including other .NET languages and native C++ code.

Hogenson_705-2C11.fm Page 316 Wednesday, October 18, 2006 5:09 PM

317

■ ■ ■

C H A P T E R 1 2

Interoperability

Interoperability, or interop as it is usually called, refers to using or invoking program code from
some other programming environment or language, for example, calling COM or native C++
code in a managed language. Interop is a complex but beautiful and extremely necessary thing.
Many people think that the C++/CLI language for the .NET platform would be used primarily
to extend existing code bases written in native C++. While there is no reason why you could not
use C++/CLI as your .NET language of choice, the support that C++/CLI provides for native
code interop on the .NET platform is indeed impressive. In many cases, you simply turn on the
/clr compiler option and recompile your native code, producing managed code (or at least
mixed code that’s mostly MSIL but with a few native x86 or x64 instructions mixed in). This
feature was called IJW or “it just works” when it was originally released along with Managed
Extensions for C++. And for the most part, it was true. It’s now called mixed mode. A huge
amount of work went into making that type of interop possible. Also, even if you’re writing an
entirely new application that uses a native API, such as Win32, interop support in C++ makes it
easier and much faster to call these APIs in C++ than it is in C#.

The Many Faces of Interop
There are several kinds of interop that you should be aware of. Cross-language interop is the
one you’ll see first, and that refers to the ability of C++/CLI to work closely with C# and Visual
Basic, and other languages that target the CLR. Because of the common platform, common IL,
and assembly and metadata formats, you can use a C# or Visual Basic assembly pretty much as
you would another C++/CLI assembly. You can reference it with #using, you can create instances
of the types declared in those assemblies, call methods, and so on. You can also go a step further
and create inheritance hierarchies that cross language boundaries, such as a C# class that
implements a C++/CLI interface, or a C++/CLI class that inherits from a class written in Visual
Basic. Once these types are compiled to MSIL, there is little that indicates the original language
in which they were authored.

In addition to cross-language interop, you may also need to interoperate with native C++
code. The way you choose to interoperate depends on whether you have source code available
or only have a binary, whether the native API is exposed as a function or a class, whether the
API is exposed via COM, and whether you can recompile the code.

Let’s first consider the case where you don’t have source access, and you simply have a
library function in a native DLL that you’d like to call from a managed environment. The CLR
provides a mechanism for doing this; it’s usually referred to as Platform Invoke, or P/Invoke,

Hogenson_705-2C12.fm Page 317 Wednesday, October 18, 2006 5:13 PM

318 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

suggesting that you are invoking a platform-specific binary. Basically, P/Invoke lets you create
a managed entry point to your native function. If the native code you want to call is not exposed
as a native, exported function, you can’t use P/Invoke. P/Invoke works well for calling Win32
APIs, and it is widely used in CLI languages for this purpose. There are some complexities
in using P/Invoke, since you have to declare managed analogs for any native structs that are
passed into the function, and this is sometimes tricky. Also, there is considerable overhead due
to switching from managed to native code and back again, as you’ll see.

In addition to P/Invoke, the CLR provides support for COM interop. You can create instances
of proxy objects to COM objects in managed code. Usually this will involve creating a wrapper
assembly that contains managed types that expose the COM interfaces to your managed code.
Visual Studio contains several tools that simplify this process, such as tlbimp.exe, which creates a
wrapper assembly from a typelib (TLB file) that is usually present with a COM library. You can
also go the other way, exposing managed objects to COM. This process involves attributing the
types with COM attributes, specifying, for example, the GUID for the type, and using tlbexp.exe
to generate a type library that can be used to instantiate the managed objects from COM as
COM objects.

All of the previously mentioned interop methods are available to all CLR languages, but in
C++/CLI, you have the option of an additional type of interop if you have the C++ source code
and can recompile it with the /clr option. Most C++ code will compile with the /clr compiler
option with minimal changes, if any. If you do this, you can re-create your native DLL as an
assembly. The types are still native, but the instructions are compiled into IL. This code can be
used from C++/CLI code (at least in mixed mode) in the same way as you would normally use
native C++ code: include the header file and link to the DLL’s import library. In pure mode and
safe mode, you cannot link in native object files and have the resulting file remain pure or safe.
If you can link together object files of different modes, the resulting assembly is “downgraded”
to the lowest common denominator; for example, if you link pure and mixed mode object files,
the result is a mixed mode assembly.

You can put both native classes and types and managed classes and types in the same
assembly in pure and mixed mode. This is useful if you want to expose native classes and types
to other .NET languages such as C# or Visual Basic. A typical scenario might be that you would
take a native class library’s source code, recompile it with the /clr option, and, in the same
assembly, add managed classes that wrap the native classes that you want to export to other
managed languages. These managed wrappers would be marked public and would be visible
to the other language. However, the native classes in the DLL would not be accessible to the
clients who use the assembly.

To support all this, there are various language features and CLR features. Cross-language
interop, P/Invoke, and COM interop are CLR features. I’ll discuss cross-language interop,
P/Invoke, and COM interop in brief. Using native types and managed types together in the
same assembly, for example, in order to create a managed wrapper for a native class library, is
the main focus of this chapter. You’ll learn how to reference a native type in a managed type,
and how to reference a managed type in a native type. You’ll see pointer types that help in
working with interoperability scenarios, such as interior pointers and pinning pointers. You’ll
also look into converting types between native and managed equivalents. This type of conver-
sion is usually called marshaling.

Interop is an intriguing, complex subject. A full discussion of all the subtle aspects of
interop would be impossible in an introductory text, so this chapter will focus on some basic
scenarios to give you an idea of what is possible. You could write an entire book on C++ interop.

Hogenson_705-2C12.fm Page 318 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 319

For more information, you may want to consult Expert Visual C++/CLI by Marcus Heege
(Apress, forthcoming).

Interoperating with Other .NET Languages
It is straightforward to use types created in another .NET Language in C++/CLI. In fact, you do
this all the time, since much of the .NET Framework is written in C#. When interoperating with
C# or VB or any of a number of non-Microsoft languages, you need to be aware of what features
of C++/CLI are available in other languages, and what are not. For example, C# does not support
global functions. If you define a global function and make it public, you cannot call it from C#.
You could call such a function through a public static method of a public class. If you want a
managed language that lets you do everything, IL is the answer—see Expert .NET 2.0 IL Assembler
by Serge Lidin (Apress, 2006) for more details. It is fair to say that IL is the language below C++/CLI
on the CLR, just as assembler is the one language lower than C++ on many platforms.

Using pure or safe mode makes sense for cross-language interop, since it’s easy to reference
MSIL assemblies from VB or C#. If you were to compile in mixed mode, you’d need to create a
managed wrapper to ensure that the code can be accessed from the other languages, as shown
in Listings 12-1 and 12-2.

Listing 12-1. Wrapping a Global Function

// global_function.cpp
// Compile with cl /clr:safe /LD global_function.cpp.

using namespace System;

namespace G
{

 void FGlobal()
 {
 Console::WriteLine("Global C++/CLI Function.");
 }

 public ref class R
 {
 public:
 static void FMember()
 {
 Console::WriteLine("C++/CLI Static Member Function.");
 FGlobal();
 }
 };
};

Hogenson_705-2C12.fm Page 319 Wednesday, October 18, 2006 5:13 PM

320 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

Listing 12-2. Consuming a Wrapped Global Function in C#

// consume_cpp.cs
// Compile with csc /r:global_function.dll consume_cpp.cs.

using G;

class C
{
 public static void Main()
 {
 // FGlobal(); // Error: global functions not available in C#.
 R.FMember(); // OK
 }
};

The output of Listing 12-2 is as follows:

C++/CLI Static Member Function.
Global C++/CLI Function.

Listing 12-3 shows a C++/CLI interface that is then implemented in a VB class in Listing 12-4.

Listing 12-3. Creating an Interface in C++

// interface_example.cpp
// Compile with cl /clr:pure /LD interface_example.cpp.

public interface class ITest
{
 void F();
 void G();
};

Listing 12-4. Using an Interface in Visual Basic

' implement_example.vb
' Compile with vbc /r:interface_example.dll implement_example.vb.

Public Class VBClass
 Implements ITest

 Public Sub F Implements ITest.F
 Console.WriteLine("F in VB")
 End Sub

Hogenson_705-2C12.fm Page 320 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 321

 Public Sub G Implements ITest.G
 Console.WriteLine("G in VB")
 End Sub

 Public Shared Sub Main
 Dim Test As ITest = New VBClass
 With Test
 .F()
 .G()
 End With
 End Sub 'Main
End Class 'VBClass

Here is the output of Listing 12-4:

F in VB
G in VB

To minimize problems with cross-language interop, a Common Language Specification
(CLS) was created that specifies common constructs across .NET languages that are usable
across language boundaries. If you are careful to utilize only those features that are CLS compliant
in the publicly visible portions of public types, you can be sure that your code is accessible to
C# and VB and any other CLR language that recognizes CLS-compliant types. You can safely
use noncompliant features inside the methods of a public type, or in private types, but the public
signatures of public types must be CLS compliant for the type to be considered CLS compliant.
There are many C++/CLI features that are not CLS compliant. Table 12-1 lists C++/CLI features
that are not CLS compliant and suggests alternatives that are.

Table 12-1. Major Features of C++/CLI That Are Not CLS Compliant, and Some Possible
Alternatives to Them

Feature Possible CLS-Compliant Alternatives

Boxed value types Use System::Object, System::ValueType, or
System::Enum.

Global functions Use static methods instead.

Native code Create CLS-compliant wrappers.

Templates Use generics or create generic interfaces.

Pointer types Use IntPtr.

Exceptions that don’t inherit from
System::Exception

Use only exceptions that inherit from
System::Exception.

Interfaces with static members Use only nonstatic methods, properties, and events.

Properties with accessors that have
different modifiers, for example, one
virtual accessor and one nonvirtual)

Use only properties with consistent modifiers on
their accessors.

Hogenson_705-2C12.fm Page 321 Wednesday, October 18, 2006 5:13 PM

322 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

Using Native Libraries with Platform Invoke
Remember that I said in Chapter 3 that there are several compilation modes supported in C++/
CLI: mixed mode (the /clr option), pure mode (/clr:pure), and safe mode (/clr:safe).
(There’s also /clr:oldSyntax, which enables the syntax for Managed Extensions for C++ that
was used in Visual Studio .NET 2002 and 2003.) In previous chapters, most of the code
compiles just as well in mixed, pure, or safe mode, except in a few cases where explicitly noted
otherwise. When dealing with interop, the choice of compilation mode matters, because native
code is potentially unsafe. P/Invoke is used when you need to invoke a function in a native DLL
in safe mode. Even though native code cannot be verified to be safe, it is the safest way to
invoke native code from managed code. P/Invoke is used widely in C#, but there are other
alternatives in C++/CLI that may often be used instead in pure and mixed modes. The other
methods will be described later in the chapter. If you are using safe mode, P/Invoke is your only
option for invoking native functions.

The basic idea of P/Invoke is that you create a new function declaration and use attributes
to associate it with an existing native function, naming the DLL that exports the function. That
is the straightforward part. The complexity arises with the types that will be used as parameters
to the function. These types must be created in C++/CLI code and must be exactly the same as
the native types the function expects.

Let’s say you want to call the MessageBox function. The Windows SDK documentation tells
us that MessageBox is stored in user32.dll, and its header file is WinUser.h. Looking up its decla-
ration, we find it as shown in Listing 12-5.

Listing 12-5. MessageBox Declaration

int MessageBox(HWND hWnd, // handle to owner window
 LPCTSTR lpText, // text in message box
 LPCTSTR lpCaption, // message box caption
 UINT uType // message box type);

This function call can be exposed for use in managed code using the DllImport attribute.
Listing 12-6 shows how the Win32 MessageBox function is declared and used in C++/CLI code.

Overriding virtual methods that
change accessibility

Use only types that don’t do this.

Operator overloading Provide methods with similar functionality, for
example, int Add(int a) for int operator+(int).

Traditional varargs, for example,
printf("%d%s", ...)

Use the new parameter array syntax: for example,
f(String^ s, ... array<R^>^ params).

Table 12-1. Major Features of C++/CLI That Are Not CLS Compliant, and Some Possible
Alternatives to Them (Continued)

Feature Possible CLS-Compliant Alternatives

Hogenson_705-2C12.fm Page 322 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 323

Listing 12-6. Calling a Win32 Function in C++/CLI

// pinvoke.cpp
using namespace System;
using namespace System::Runtime::InteropServices;

// Note the use of managed equivalents of native types.
[DllImport("user32.dll", CharSet=CharSet::Auto)]
int MessageBox(IntPtr, String^ text, String^ caption,
 unsigned int type);

int main()
{
 MessageBox(IntPtr::Zero, "Hello, World!", "Win32 Message Box", 0);
}

You can easily verify that this code works just fine in mixed mode (with the /clr option),
pure mode (with the /clr:pure option), and safe mode (with the /clr:safe option).

The DllImport attribute takes the DLL name as an argument, as well as an argument that
specifies how string arguments are to be treated. As you know, in native code strings may be
ANSI or MBCS (type char) or Unicode (type wchar_t). The managed string type is always
Unicode, but a lot of APIs take ANSI strings. The CharSet parameter allows you to tell the
system to convert the managed string to the desired native string type. Also, it actually controls
whether the Unicode or the ANSI version of a Win32 function is called. The CharSet parameter
has three possible values: CharSet::Ansi, CharSet::Auto, and CharSet::Unicode.
CharSet::Auto lets the system choose the right marshaling on its own. You may know that there
is no actual function MessageBox. In WinUser.h, you can see that MessageBox is a macro that
resolves to one of the real function names: MessageBoxA for the ANSI version and MessageBoxW
for the Unicode version. If you specify CharSet::Unicode, the function called will actually be
MessageBoxW. If you specify CharSet::Ansi, it will be MessageBoxA. This mechanism is indepen-
dent of whether or not UNICODE is defined. This is one of the ways that P/Invoke is fine-tuned for
use with the Win32 APIs, although it may be used for any native DLL. If you are using P/Invoke
with your own DLL and you want to disable CharSet’s automatic mapping to ANSI or Unicode
versions of function names, you can set the Boolean property ExactSpelling to true, like this:

[DllImport ("mydll.dll", CharSet = CharSet::Ansi, ExactSpelling = true)]

Another thing you might be wondering about in Listing 12-6 is the use of IntPtr for the
HWND parameter and the use of IntPtr::Zero as the parameter. IntPtr is a useful struct in
interop programming since it can be used for a pointer type in native code, but it doesn’t
appear to be a pointer in managed code. It is CLS compliant, unlike native pointers, so is usable
in other languages. The size of IntPtr is dependent on the pointer size for the platform, so it
can represent a 32-bit pointer or a 64-bit pointer. It can be converted easily to a 32-bit or 64-bit
integer or to an untyped pointer (void *). The IntPtr type may be used to hold values of native
OS handles (such as an HWND) and pointers obtained from other P/Invoke calls.

If the function you want to import has a name conflict with one you’re already using, you
can use the EntryPoint property on DllImport to specify the desired native function, and then
name the function something else that won’t conflict, as in Listing 12-7.

Hogenson_705-2C12.fm Page 323 Wednesday, October 18, 2006 5:13 PM

324 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

Listing 12-7. Using DllImport’s EntryPoint Property

// pinvoke_rename_entry_point.cpp

#using "System.Windows.Forms.dll"

using namespace System;
using namespace System::Runtime::InteropServices;
using namespace System::Windows::Forms;

[DllImport("user32.dll", CharSet=CharSet::Auto, EntryPoint="MessageBox")]
int NativeMessageBox(IntPtr, String^ text, String^ caption,
 unsigned int type);

int main()
{
 NativeMessageBox(IntPtr::Zero, "Hello, World!", "Win32 Message Box", 0);
 MessageBox::Show("Hello, Universe!", "Managed Message Box");
}

In general, with P/Invoke, you should be sure that you know the calling convention of the
target function. As long as you are calling Win32 functions, you don’t need to worry about the
calling convention used, because all Win32 functions use the __stdcall calling convention
(WINAPI in the Windows headers evaluates to this), and that is the default for DllImport.
However, if you are using your own native DLL compiled with Visual C++, for which the default
calling convention is __cdecl, you may need to set the CallingConvention property on the
DllImport attribute. For example, you need to set the CallingConvention to
CallingConvention::Cdecl if you are calling any CRT function via P/Invoke. For example, the
Bessel functions are not available in the .NET Framework API, so you could expose them from
the CRT via the following declaration:

[DllImport("msvcr80.dll", CallingConvention=CallingConvention.Cdecl)]
extern double _jn(int n, double x); // Bessel function of the first kind

This code would be useful in safe mode only, since in pure mode you can call CRT func-
tions directly using the managed CRT.

The CallingConvention property can be used to call a method on a class that is exported
from a DLL. Let’s look at this possibility in Listings 12-8 and 12-9.

Listing 12-8. Compiling a Native Class into a DLL

// nativeclasslib.cpp
// Compile with cl /LD nativeclasslib.cpp.

#include <stdio.h>

Hogenson_705-2C12.fm Page 324 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 325

class __declspec(dllexport) NativeClass
{
 private:
 int m_member;
 public:
 NativeClass() : m_member(1) { }

 int F(int i)
 {
 // __FUNCSIG__ is a compiler-defined macro evaluating
 // to the current function signature.
 printf("%s\n", __FUNCSIG__);
 return m_member + i;
 }

 static NativeClass* CreateObject()
 {
 printf("%s\n", __FUNCSIG__);
 return new NativeClass();
 }

 static void DeleteObject(NativeClass* p)
 {
 printf("%s\n", __FUNCSIG__);
 delete p;
 }
 };

// If you do not want to use the obfuscated names, you can use these exports:

extern "C" __declspec(dllexport) NativeClass* CreateObject()
{
 return NativeClass::CreateObject();
}

extern "C" __declspec(dllexport) void DeleteObject(NativeClass* p)
{
 NativeClass::DeleteObject(p);
}

/* The mangled names were obtained by running the command.
 link /DUMP /EXPORTS nativeclasslib.dll
 which outputs:

 ordinal hint RVA name

Hogenson_705-2C12.fm Page 325 Wednesday, October 18, 2006 5:13 PM

326 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 1 0 00001000 ??0NativeClass@@QAE@XZ
 2 1 000010D0 ??4NativeClass@@QAEAAV0@ABV0@@Z
 3 2 00001050 ?CreateObject@NativeClass@@SAPAV1@XZ
 4 3 000010A0 ?DeleteObject@NativeClass@@SAXPAV1@@Z
 5 4 00001020 ?F@NativeClass@@QAEHH@Z
 6 5 000010F0 CreateObject
 7 6 00001100 DeleteObject
*/

Listing 12-9. Using the CallingConvention Property

// pinvoke_thiscall.cpp
// Compile with cl /clr:safe pinvoke_thiscall.cpp.

using namespace System;
using namespace System::Text;
using namespace System::Runtime::InteropServices;

namespace NativeLib
{
 [DllImport("nativeclasslib.dll",
 EntryPoint="?F@NativeClass@@QAEHH@Z",
 CallingConvention=CallingConvention::ThisCall)]
 extern int F(IntPtr ths, int i);

 // static NativeClass* NativeClass::CreateObject();
 [DllImport("nativeclasslib.dll", EntryPoint=
 "?CreateObject@NativeClass@@SAPAV1@XZ")]
 extern IntPtr CreateObject();

 // static void NativeClass::DeleteClass(NativeClass* p)
 [DllImport("nativeclasslib.dll", EntryPoint=
 "?DeleteObject@NativeClass@@SAXPAV1@@Z")]
 extern void DeleteObject(IntPtr p);
}

int main()
{
 IntPtr ptr = NativeLib::CreateObject();
 int result = NativeLib::F(ptr, 50);
 Console::WriteLine("Return value: {0} ", result);
 NativeLib::DeleteObject(ptr);
}

The output of Listing 12-9 is shown here:

Hogenson_705-2C12.fm Page 326 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 327

class NativeClass *__cdecl NativeClass::CreateObject(void)
int __thiscall NativeClass::F(int)
Return value: 51
void __cdecl NativeClass::DeleteObject(class NativeClass *)

As you can see, in order to use P/Invoke with class functions, whether static or nonstatic,
you need the obfuscated names, which we obtain by running dumpbin.exe or link.exe /DUMP
/EXPORTS as explained in the code comments. The static functions do not require a special
calling convention, since they use the __cdecl calling convention. The member function F
required the __thiscall calling convention, because the implicit parameter for any member
function is a pointer to the object.

The declaration of the P/Invoke function creates a managed name for the native function,
as well as a small piece of code that in turn calls the native function. This piece of code is called
a managed entry point to a native function, and it involves what is called a context switch
between managed and native code. This is also called a managed to native transition or vice
versa. Context switches add overhead to the function call. During a context switch, parameters
are marshaled between native and managed types. The penalty is incurred again when the
context switches back to managed code. You might say that execution is detained at the border
for a time when crossing between managed and native code.

Data Marshaling
A lot of what is happening during the context switches is marshaling of parameters between
native types and managed types. Marshaling for primitive types is straightforward and actually
doesn’t involve any work at runtime. Marshaling character, string, and structure types is not as
straightforward. Table 12-2 shows the default mappings used. So, if the type used in the native
function you’re calling is as shown in one of the first two columns, the type in the P/Invoke
signature should be one of the types in the last two columns.

Table 12-2. Default Mappings Used When Marshaling Types Between Native
and Managed Code

Windows Type Native Code C++/CLI CLR

HANDLE, DWORD_PTR void * void * IntPtr, UIntPtr

BYTE unsigned char unsigned char Byte

SHORT short short Int16

WORD unsigned short unsigned short UInt16

INT int int Int32

UINT unsigned int unsigned int UInt32

LONG long long Int32

BOOL long bool Boolean

DWORD unsigned long unsigned long UInt32

Hogenson_705-2C12.fm Page 327 Wednesday, October 18, 2006 5:13 PM

328 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

You can change the default marshaling by using the MarshalAs attribute. Marshaling
for more complex types is not as simple. The Marshal class in the namespace
System::Runtime::InteropServices provides many useful methods for interoperability. This
book will cover only a few of the most useful. Future versions of Visual C++ may include a
marshaling template library, which should make marshaling much more convenient. A full
discussion would be outside the scope of this book.

If you instead use other interop methods described later, you can include the relevant
header files that define all the types used in the parameter list, and not only avoid the trouble
of re-creating them in managed code, but in many cases avoid the context switch to native
code and vice versa. Still, if you do need to use P/Invoke, you should avail yourself of Internet
resources for P/Invoke programming, such as www.pinvoke.net, which includes prepared code
for many Win32 calls.

Interop with COM
COM interop can occur in two ways (three, if you count recompiling a COM object with the
/clr option). You can access a COM object from managed code, or you can expose your
managed object as a COM object.

Using a COM object from managed code involves creating a wrapper assembly that exposes
the COM object via a set of managed wrapper classes and interfaces. The wrapper assembly
can be created automatically from a type library or COM DLL or executable using tlbimp.exe.
Using tlbimp.exe creates a set of wrapper classes with default marshaling of managed and
native types. If you need more custom marshaling, you can also create these wrappers manually.

The wrapper assembly may be referenced with #using, and you can then call into the COM
objects, assuming they are properly registered. If you use #import (the usual way to import
COM types from a DLL or type library) with managed code, this will cause code to be generated
that is not compilable with /clr:pure or /clr:safe.

ULONG unsigned long unsigned long UInt32

CHAR char char Char

LPCSTR char * String ^ [in],
StringBuilder ^
[in, out]

String ^ [in],
StringBuilder ^
[in, out]

LPCSTR const char * String ^ String

LPWSTR wchar_t * String ^ [in],
StringBuilder ^
[in, out]

String ^ [in],
StringBuilder ^
[in, out]

LPCWSTR const wchar_t * String ^ String

FLOAT float float Single

DOUBLE double double Double

Table 12-2. Default Mappings Used When Marshaling Types Between Native
and Managed Code (Continued)

Windows Type Native Code C++/CLI CLR

Hogenson_705-2C12.fm Page 328 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 329

COM interop is a CLR feature, not specifically a C++/CLI language feature, so it is not
described here in depth. There are excellent books available on COM interop, such as COM and
.NET Interoperability by Andrew Troelsen (Apress, 2002) and .NET and COM: The Complete
Interoperability Guide by Adam Nathan (Sams, 2002).

Using Native Libraries Without P/Invoke
Native libraries may be used in C++/CLI code without using P/Invoke. As native object files,
they can be linked in. If source is available, you can recompile the source as managed code,
often without changing it. If you only have a binary and a header file, you can include the
header and link with the native object file, static library, or import library for a DLL. The Visual
Studio 2005 linker can also handle linking native and managed files into a single assembly.

You won’t be able to use these techniques in safe mode; in safe mode, P/Invoke is the only
way to go. You can use native libraries in pure mode and mixed mode.

The C Runtime (CRT) Library and the Standard C++ Library are available as pure MSIL. The
DLL names are a bit different: msvcm80.dll as opposed to msvcr80.dll. The m indicates managed
code. If you compile code that uses the CRT with either the /clr option or the /clr:pure
option, you’ll get the appropriate pure MSIL CRT linked in instead of the native CRT. When
using interop, you should know and care about whether you are calling into a native function
or calling into native code that was recompiled to MSIL (such as a function in the pure mode
CRT) because it is a lot faster to avoid a context switch from managed code (MSIL) to native
code whenever possible. In general, from managed code, it is faster to call other managed
code, and from native code, it is faster to call other native code. Did I mention how slow the
context switch is? Because of the slowness of the context switch, it’s usually better to recompile
your native code as managed code if you want to use it frequently from managed code, as we
do by providing the managed CRT.

Consider some simple code that uses the Win32 API, as in Listing 12-10.

Listing 12-10. Using the Win32 API

// message_box.cpp

#include <windows.h>

int main()
{
 MessageBox(0, "Hello, World!", "Win32 Message Box", 0);
}

The MessageBox function code lives in user32.dll and is an exported function there. To
produce a native executable, we would to link to the import library user32.lib.

cl message_box.cpp user32.lib

However, we could also do the following:

cl /clr message_box.cpp user32.lib
cl /clr:pure message_box.cpp user32.lib

Hogenson_705-2C12.fm Page 329 Wednesday, October 18, 2006 5:13 PM

330 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

The only change is to compile with the /clr or /clr:pure option enabled. That is a big
difference, because it means that the object file contains managed code, not native code. The
linker is able to link the managed code with a native import library without any problem. What
this means to you is that you can call a function in a native DLL from managed code simply by
including the header file and invoking the function as usual. This works just as well in both
mixed and pure modes. In the Visual Studio IDE, you would have to make a few changes in the
project properties to recompile your code that uses Win32 with the CLR option. You already
know (because we discussed it in Chapter 3) about the Common Language Runtime property.
What might not be obvious is that to refer to a library like user32.lib you might need to change
the Linker property for Additional Dependencies. If you created a CLR project, it is set to
$(NOINHERIT). You’ll have to remove that to enable CLR projects to link with Win32 DLLs.

The drawback to this method is context switching from native to managed code and vice
versa. Although it may be easy to invoke the MessageBox method from managed code, a context
switch takes place at each transition point—and that is every time a native function is called
from managed code. As long as you can live with this performance penalty, this interop method
is useful. It’s also the recommended method when you don’t have access to the source code for
your native functions. If you do have source to your native DLL, recompiling it as managed
code might be better and might help avoid expensive context switches between managed and
native code.

Incidentally, if you try /clr:safe, good luck wading through the thousands of lines of
compiler errors as the C++/CLI compiler tries to interpret the Windows headers in safe mode.
Here’s a small excerpt of the output:

C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(151) : e
rror C4959: cannot define unmanaged struct 'tagIMECHARPOSITION' in /clr:safe bec
ause accessing its members yields unverifiable code
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(157) : e
rror C4956: 'tagIMECHARPOSITION *' : this type is not verifiable
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(157) : e
rror C4956: 'tagIMECHARPOSITION *' : this type is not verifiable
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(157) : e
rror C4956: 'tagIMECHARPOSITION *' : this type is not verifiable
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(159) : e
rror C4956: 'BOOL (__stdcall *)(HIMC,LPARAM)' : this type is not verifiable
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(315) : e
rror C4956: 'int (__stdcall *)(LPCSTR,DWORD,LPCSTR,LPVOID)' : this type is not v
erifiable
C:\Program Files\Microsoft Visual Studio 8\VC\PlatformSDK\include\imm.h(316) : e
rror C4956: 'int (__stdcall *)(LPCWSTR,DWORD,LPCWSTR,LPVOID)' : this type is not
 verifiable

Because pointers and unmanaged structs are not allowed in safe mode, you can’t use the
Windows headers.

But we haven’t done any real interop yet, we’ve just done the first step. In any interop
scenario, you’re going to have managed types in the picture, so let’s expand the simple call to
MessageBox with some managed code. Listing 12-11 shows a case where you are writing a managed
class that calls some Win32 functions in its implementation.

Hogenson_705-2C12.fm Page 330 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 331

Listing 12-11. Using Win32 Functions in a Managed Class

// interop_messagebox.cpp

#include <windows.h>
#include <vcclr.h> // for PtrToStringChars

using namespace System;

public ref class MessageBoxClass
{
 public:

 property String^ Message;
 property String^ Caption;

 int DisplayBox()
 {
 // Use pinning pointers to lock down the data while it's being
 // used in native code.
 pin_ptr<const wchar_t> message = PtrToStringChars(Message);
 pin_ptr<const wchar_t> caption = PtrToStringChars(Caption);
 return MessageBoxW(0, message, caption, MB_OK);
 }
};

int main()
{
 MessageBoxClass m;
 m.Message = "Managed string used in native function";
 m.Caption = "Managed Code using Win32 Message Box";
 m.DisplayBox();
}

In Listing 12-11, we use the Unicode form of the MessageBox function, MessageBoxW, since
we’re starting with a Unicode string. We start to see some more complex operations as we
marshal the managed String type to a native LPCWSTR parameter. LPCWSTR is a typedef for const
wchar_t*. The PtrToStringChars function is a convenience provided in vcclr.h that gives you a
pointer to the underlying character array. The data is of type Char, which is the same as wchar_t.
Because the array is in an object on the managed heap, you need to use pinning pointers (pin_ptr)
to make sure that the data isn’t moved by the garbage collector during these operations. We’ll
discuss pinning pointers in more detail later in this chapter, but for now, suffice it to say that
the way pinning pointers work is that whatever they point to is marked as fixed in memory as
long as the pinning pointer exists. If the pinning pointer points to the internals of an object, the
containing object is pinned. Once the pinning pointer goes out of scope, the object is free to
move again. The pinning pointer has a defined conversion to its underlying pointer type, so it
doesn’t require a cast when passed to MessageBoxW. You must be careful to use pinning pointers
for any pointers you pass to native code. You can also use pinning pointers when you need to

Hogenson_705-2C12.fm Page 331 Wednesday, October 18, 2006 5:13 PM

332 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

use pointer arithmetic on data that’s on the managed heap, as you saw in Chapter 5 when you
looked at how to iterate over the elements of a managed array using pointer arithmetic.

The call to MessageBoxW is a transition to native code, just as in the case where P/Invoke
was used to call MessageBox. As long as the native functions are called infrequently and the
main action is in the managed code, this form of interop makes sense. If all you have is a binary,
you don’t have any other options available to you. In the next section, you’ll see how if you have
access to the source for the native library and can recompile it, you can avoid the context
switch between native and managed code.

Recompiling a Native Library As Managed Code
At this point, you’ve seen how to call native functions in two ways from managed code—using
P/Invoke and by linking with the appropriate binary and including the appropriate header.
You’ve gotten a taste of the conversions that are used and some of the concerns when calling
native code, such as pinning movable data.

Now let’s look at another alternative, and that is recompiling native code as managed
code. This could be an attractive option if you own the source code for the native library and
plan to extensively call your native code from managed code. This is the option of choice for a
frequently used library that is to be used primarily from managed code, maybe even from
another language, such as C# or VB. It’s an attractive option because you can avoid the context
switches between managed and native code. Compiling your native code as managed code
doesn’t mean it will run slower. Remember that all managed code is compiled on demand at
runtime to native code before it gets executed by the CLR. That’s what the JIT (Just In Time)
compiler does, and is a reason that managed code and native code can have comparable
execution performance. Of course, there is always the overhead of the JIT compilation itself
and runtime services such as garbage collection.

Consider a native class library, as in Listing 12-12. It uses the Windows headers and the CRT.

Listing 12-12. Creating a Native Message Box Class

// native_message_box_class.h

#include <wchar.h>
#include <windows.h>

enum MessageBoxType
{
 OK, OKCANCEL, ABORTRETRYIGNORE,
 YESNOCANCEL, YESNO,
 RETRYCANCEL, CANCELTRYCONTINUE,
 ICONHAND = 0x10,
 ICONQUESTION = 0x20,
 ICONEXCLAMATION = 0x30,
 ICONASTERISK = 0x40,
 TYPEMASK = 0xF,
 ICONMASK = 0xF0
};

Hogenson_705-2C12.fm Page 332 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 333

class MessageBoxClass
{

 wchar_t* m_message;
 wchar_t* m_caption;
 MessageBoxType m_type;
 static const size_t sz = 1024;

 public:

 MessageBoxClass(const wchar_t* message, const wchar_t* caption,
 MessageBoxType type)
 : m_type(type)
 {
 m_message = new wchar_t[sz];
 m_caption = new wchar_t[sz];
 wcscpy_s(m_message, sz, message); // using the "safe" CRT
 wcscpy_s(m_caption, sz, caption);
 }

 void SetMessage(const wchar_t* message)
 {
 if (message != NULL)
 {
 wcscpy_s(m_message, sz, message);
 }
 }
 const wchar_t* GetMessage() const { return m_message; }

 void SetCaption(const wchar_t* caption)
 {
 if (caption != NULL)
 {
 wcscpy_s(m_caption, sz, caption);
 }
 }
 const wchar_t* GetCaption() const { return m_caption; }

 MessageBoxType GetType() const { return m_type; }
 void SetType(MessageBoxType type){ m_type = type; }

 int Display()
 {
 return MessageBoxW(0, m_message, m_caption, m_type);
 }

Hogenson_705-2C12.fm Page 333 Wednesday, October 18, 2006 5:13 PM

334 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 ~MessageBoxClass()
 {
 delete m_message;
 delete m_caption;
 }

};

Listing 12-13 shows the corresponding source file containing the main method.

Listing 12-13. Using Your Message Box Class

// native_message_box.cpp
#include "native_message_box_class.h"

int main()
{
 MessageBoxClass* messageBox = new MessageBoxClass(
 L"Do you like this example?", L"Native message box",
 static_cast<MessageBoxType>(YESNOCANCEL | ICONASTERISK));

 int result = messageBox->Display();

 wchar_t wstr[1024];
 swprintf_s(wstr, L"The dialog result was %d", result);
 messageBox->SetMessage(wstr);
 messageBox->SetType(OK);
 messageBox->Display();

}

Try recompiling the code in Listing 12-13 with the /clr option. It works fine. You can also
use the /clr:pure option in this case. As you’ve seen before, the Windows headers and the CRT
are both supported in pure mode. Whether you compile with /clr or not, the link command
line is the same, and the executable looks similar, but they are in fact very different.

Once you’ve recompiled, if you want to expose the native libraries to other managed
assemblies, you need to write a wrapper layer. The wrapper layer is compiled into the same
assembly as the recompiled native code. Listing 12-14 shows a wrapper layer for the message
box example. Here, we use several techniques to optimize performance. We use
PtrToStringChars to get a direct pointer to the character data in the String class. This is a
pinned pointer, of course, since it is to be passed to native code. Alternative methods, such as
using ToCharArray and then working with the array to get something suitable to pass as a const
wchar_t *, would involve copying the string characters.

Hogenson_705-2C12.fm Page 334 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 335

Listing 12-14. Wrapping Your Message Box Class

// message_box_wrapper.cpp

#include "native_message_box_class.h"
#include <vcclr.h>

using namespace System;

enum class MessageBoxTypeEnum
{
 OK, OKCANCEL, ABORTRETRYIGNORE,
 YESNOCANCEL, YESNO,
 RETRYCANCEL, CANCELTRYCONTINUE,
 ICONHAND = 0x10,
 ICONQUESTION = 0x20,
 ICONEXCLAMATION = 0x30,
 ICONASTERISK = 0x40,
 TYPEMASK = 0xF,
 ICONMASK = 0xF0
};

wchar_t* MarshalString(String^ s, size_t sizeInCharacters)
{
 pin_ptr<const wchar_t> pinnedChars = PtrToStringChars(s);
 wchar_t* wcs = new wchar_t[sizeInCharacters];
 wcscpy_s(wcs, sizeInCharacters, pinnedChars);
 return wcs;
}

public ref class MessageBoxWrapper
{

 MessageBoxClass* nativeMessageBox;
 literal unsigned int maxSize = 1024;

 public:

 MessageBoxWrapper(String^ message, String^ caption, MessageBoxTypeEnum type)
 {
 pin_ptr<const wchar_t> pinnedMessage = PtrToStringChars(message);
 pin_ptr<const wchar_t> pinnedCaption = PtrToStringChars(caption);

 nativeMessageBox = new MessageBoxClass(
 pinnedMessage, pinnedCaption,
 static_cast<MessageBoxType>(type));
 }

Hogenson_705-2C12.fm Page 335 Wednesday, October 18, 2006 5:13 PM

336 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 property String^ Caption
 {
 String^ get()
 {
 return gcnew String(nativeMessageBox->GetCaption());
 }
 void set(String^ s)
 {
 nativeMessageBox->SetCaption(MarshalString(s, maxSize));
 }
 }
 property String^ Message
 {
 String^ get()
 {
 return gcnew String(nativeMessageBox->GetCaption());
 }
 void set(String^ s)
 {
 nativeMessageBox->SetMessage(MarshalString(s, maxSize));
 }
 }
 property MessageBoxTypeEnum Type
 {
 MessageBoxTypeEnum get()
 {
 return static_cast<MessageBoxTypeEnum>(nativeMessageBox->GetType());
 }
 void set(MessageBoxTypeEnum t)
 {
 nativeMessageBox->SetType(static_cast<MessageBoxType>(t));
 }
 }
 int Display()
 {
 if (nativeMessageBox != NULL)
 return nativeMessageBox->Display();
 else return -1;
 }

 ~MessageBoxWrapper()
 {
 this->!MessageBoxWrapper();
 }

Hogenson_705-2C12.fm Page 336 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 337

 !MessageBoxWrapper()
 {
 delete nativeMessageBox;

 }

};

int main()
{
 MessageBoxWrapper^ wrapper = gcnew MessageBoxWrapper(
 "Do you like this message box?",
 "Managed wrapper message box.",
 MessageBoxTypeEnum::YESNO);
 Console::WriteLine("Message is: {0}", wrapper->Message);
 int result = wrapper->Display();
 Console::WriteLine("Result was {0}", result);
}

The next step (see Listing 12-15) is to use the wrapper from another assembly, or even from
another .NET language such as C#, effectively exposing a native class library to C#. Cross-language
work is best done in the IDE, since the development environment does a lot of complicated
things for you, such as embedding the native manifests in your C++ code with mt.exe, which is
a required step in Visual C++ 2005. (For information on Visual C++ native manifests, see the
product documentation.) Be sure to compile the C++/CLI code to a DLL rather than an executable,
then add a project reference from the C# project to the C++/CLI code.

Listing 12-15. Using a Wrapper from a C# Assembly

// Program.cs
using System;
using System.Collections.Generic;
using System.Text;

class Program
{
 static void Main(string[] args)
 {
 MessageBoxWrapper wrapper =
 new MessageBoxWrapper("I hope you love this message box!",
 "C# using Native Message Box", MessageBoxTypeEnum.OKCANCEL);
 wrapper.Display();
 }
}

A successful wrapper layer will likely involve a lot of conversions between native and
managed types. How you handle these conversions can involve a surprising amount of code
and have a big impact on the performance of the wrapper class system. When writing managed

Hogenson_705-2C12.fm Page 337 Wednesday, October 18, 2006 5:13 PM

338 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

code that calls into native code frequently in a tight loop, you need to be particularly careful to
minimize transitions. Consider the code in Listing 12-16, which demonstrates the performance
effect of native to managed transitions. It also demonstrates the use of #pragma to include both
native and managed code in the same file. In this case, everything after #pragma unmanaged and
before #pragma managed is interpreted as native code. No managed constructs are allowed there. By
moving these pragmas around in code, you can see what the effects are of having various
portions of the code native or managed.

Listing 12-16. Using #pragma managed and #pragma unmanaged

// context_switch.cpp
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#pragma unmanaged
int native_function(wchar_t* str1, wchar_t* str2)
{
 int i = 0;
 while (*str1++ = *str2++) i++;
 return i;
}

#pragma managed

wchar_t* random_string(wchar_t* wcs, int n)
{
 for (int i = 0; i < n - 1; i++)
 {
 wcs[i] = (wchar_t) floor(((double) rand() / (double) RAND_MAX * 26)) + L'A';
 }
 return wcs;
}
// Try commenting out the pragma above random_string and uncomment this:
// #pragma managed.

int main()
{
 wchar_t wcs1[100];
 wchar_t* wcs2 = new wchar_t[100];
 memset(wcs1, 0, 100 * sizeof(wchar_t));
 clock_t t = clock();
 const int num_iter = 100000;

Hogenson_705-2C12.fm Page 338 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 339

 for (int i = 0; i < num_iter; i++)
 {
 random_string(wcs1, 100);
 native_function(wcs2, wcs1);
 }
 double time_elapsed = (clock()-t)/(double)CLOCKS_PER_SEC;
 printf("total time elapsed: %2.2f seconds\n", time_elapsed);
}

On my system, when I execute the code in Listing 12-16 with native_function as native
code and random_string as managed code, the execution time is 1.3 seconds. On the other hand, if
both native_code and random_string are made native by moving the comment as suggested, we
can avoid the transition on each loop and the execution time gets down to .73 seconds, which
is just as fast (at least to two decimal places) as fully native code compiled with /O2, also .73 seconds.

Next, we turn to a discussion of the interior pointer and pinning pointer types, which
we’ve used here and there throughout the text. These constructs are particularly useful when
dealing with mixing native and managed types.

Interior Pointers
Sometimes a real pointer is needed to do some fast pointer arithmetic on a collection type in a
performance-critical algorithm. It would have to be a pointer into a managed type that is itself
on the managed heap. The interior pointer, interior_ptr<type>, provides this functionality. It
is called an interior pointer because it points to an address inside a managed object. An interior
pointer supports pointer arithmetic just like an ordinary pointer, but it is updated by the garbage
collector if the object is moved in memory, just like the underlying address in a handle. Interior
pointers may not be used to point to anything that isn’t part of a managed object.

To assign a value to an interior pointer, use the address-of operator (&) on a managed
object (see Listing 12-17).

Listing 12-17. Using an Interior Pointer

// interior_ptr.cpp
using namespace System;

ref struct S
{
 array<int>^ array1;

 S()
 {
 array1 = gcnew array<int>(10)
 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 };
 }

Hogenson_705-2C12.fm Page 339 Wednesday, October 18, 2006 5:13 PM

340 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 void f()
 {
 interior_ptr<int> p = &array1[0];
 for (int i = 0; i < 10; i++)
 {
 Console::WriteLine(*p++);
 }
 }
};

Note that when you dereference an interior pointer, you get the object, just like a regular
pointer. If you take the address of an interior pointer, you get a native pointer that is the address
that the interior pointer designates. However, it’s not a good idea to do that since the native
pointer won’t necessarily continue to point to the object. Once the garbage collector moves
that object around in memory, the address of the object will no longer match the native pointer.

Pinning Pointers
As you have already seen, it is possible to prevent the garbage collector from moving an object
around in memory by creating what is called a pinning pointer and setting it to point to a member
of the object. Any object that has an element pointed to by a pinning pointer will not be moved
by the garbage collector as long as that pinning pointer is in scope and is tied to the object. The
object is said to be pinned. The syntax pin_ptr<type> is used.

Pinning pointers cannot be used as return values, parameters, or members of a type. You
also cannot cast to a pinning pointer. They can only be used as automatic variables on the stack.
This is because pinning pointers make use of a runtime feature that is only available on auto-
matic stack-based variables, due to the nature of the pinning mechanism.

Pinning pointers are necessary when you need to use a native API call that takes a native
pointer as a parameter. You’ll need to create a pinning pointer to mark that object as fixed in
memory for the duration of the native function call. You’ve seen this use of pinning pointers
elsewhere in this chapter. Interior pointers won’t work for this purpose because they (like
handles) are subject to being updated when the containing object is moved.

Because a pinning pointer pins an entire managed object when it is pointed at one part of
the object, you can take advantage of this in order to write some efficient algorithms. For example,
you can pin a managed array by pinning one of its elements. Then you can use native pointers to
work on the array without concern that the managed array might be moved in memory. You
should not overuse pinning pointers because pinning objects on the managed heap reduces
the efficiency of the garbage collector. For this reason, be careful of the scope of a pinning
pointer. You want to make sure it either goes out of scope as soon as possible after it is no
longer needed, or it is assigned to nullptr, which has the same effect.

You must take particular care when assigning values to pinning pointers to ensure that the
resulting pointers are not allowed to persist beyond the limited scope in which the pinning
pointer is declared. Therefore, do not return a pinning pointer as a return value, and do not
return a pointer that has been assigned to a pinned pointer as a return value. If you do, then
you will have a pointer that points to somewhere in the managed heap, not necessarily to an
object at all (once the garbage collector moves the original pinned object). This type of program-
ming error is known as a GC hole. Listing 12-18 shows an example of a GC hole.

Hogenson_705-2C12.fm Page 340 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 341

Listing 12-18. Demonstrating a GC Hole

// gc_hole.cpp
using namespace System;

ref struct R
{
 array<int>^ a;

 R()
 {
 a = gcnew array<int> { 1, 2, 3, 4, 5 };
 }
};

void F(int* ptr)
{
 if (ptr)
 Console::WriteLine(*ptr); // possible crash
}

int* GcHole(R^ r) // gc hole
{
 pin_ptr<int> pinp = &r->a[0];
 int *ptr;
 ptr = pinp; // pointer assigned to pinning pointer
 // ...
 return ptr; // pointer into gc heap returned (!)
}

int main() {
 R^ r = gcnew R;
 F(GcHole(r));
}

Native Objects and Managed Objects
You may sometimes need to mix objects of managed and native types. You’ll next learn what
you need to do if you need to have a managed object encapsulated in a native type, as well as
how to include native objects in managed types.

But first, a little background and context. When would you need to write code like this? If
you are extending a native application with managed types, you’ll probably need to use the
native types in your managed types. If in addition the native types need to refer to managed
types, then you need to use the gcroot template to refer to them, as you will see in the next section.

Hogenson_705-2C12.fm Page 341 Wednesday, October 18, 2006 5:13 PM

342 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

Using a Managed Object in a Native Class
In a native class, you cannot simply declare a handle. Native types do not know what a handle
is and what to do with one as a member. The code in Listing 12-19 is illegal.

Listing 12-19. Misusing a Handle

// native_in_managed_bad.cpp

using namespace System;

ref class R {};

class N
{
 R^ r; // illegal

 public:
 N()
 {
 r = gcnew R();
 }

};

There is a way to properly contain a handle in a native type, and that is to use the gcroot
template, with the handle to the reference type as an argument. In Chapter 6, you saw how this
was done with the gcroot and the auto_gcroot templates. Listing 12-20 illustrates the difference
between the gcroot template and the auto_gcroot template.

Listing 12-20. gcroot vs. auto_gcroot

// auto_gcroot.cpp

#include <msclr/gcroot.h>
#include <msclr/auto_gcroot.h>
using namespace System;
using namespace msclr;

ref class R
{
 public:
 void f()
 {
 Console::WriteLine("managed member function");
 }

Hogenson_705-2C12.fm Page 342 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 343

 ~R()
 {
 Console::WriteLine("destructor");
 }

};

class N
{
 gcroot<R^> r_gcroot;
 auto_gcroot<R^> r_auto_gcroot;

 public:
 N()
 {
 r_gcroot = gcnew R();
 r_gcroot->f();
 r_auto_gcroot = gcnew R();
 r_auto_gcroot->f();
 }

};

int main()
{
 N n;
 // When n gets destroyed, the destructor for the auto_gcroot object
 // will be executed, but not the gcroot object.
}

The output of Listing 12-20 is as follows:

managed member function
managed member function
destructor

As you can see, the destructor was called only once, for the auto_gcroot object. Now, if we
have a function that takes a handle to a managed object, we can pass in the gcroot or auto_gcroot
handle instead. Both gcroot and auto_gcroot have implicit conversions to the underlying
handles. They also both work with boxed value types.

Using a Native Object in a Managed Type
Also in Chapter 6, you saw one way to include a native object in a managed type. A somewhat
cleaner way to include this is to use a template class that takes care of making sure that the
native class gets cleaned up properly automatically when the enclosing class exits. Listing 12-21
defines a template reference type native_root that encapsulates the native pointer and can be

Hogenson_705-2C12.fm Page 343 Wednesday, October 18, 2006 5:13 PM

344 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

used somewhat like auto_gcroot. We use the native class to open a file, and we see that it is
closed when delete is called on the enclosing reference type or the enclosing object goes out
of scope.

Listing 12-21. Encapsulating a Native Pointer

// native_in_managed.cpp

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

using namespace System;
using namespace System::Runtime::InteropServices;

// template for embedding a native class
// in a reference type
template<typename T>
ref class native_root
{
 T* t;

 !native_root()
 {
 if (t)
 {
 delete t;
 t = NULL;
 }
 }

 ~native_root()
 {
 this->!native_root();
 }

 public:

 native_root() : t(new T) {}

 // These must be static to prevent them from being used
 // within the class (e.g. when we use this-> in ~native_root).

Hogenson_705-2C12.fm Page 344 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 345

 // allows access to the underlying pointer
 static T* operator&(native_root% n) { return n.t; }
 // allows -> to be used to access members
 static T* operator->(native_root% n) { return n.t; }
};

class native_exception {};

// typical native class
class NativeClass
{
 FILE* fp;
 static const int TIME_BUFFER_SIZE = 32;

 public:
 NativeClass()
 {
 printf("Opening the file.\n");
 // Open a file for Unicode writing.
 int errcode = fopen_s(&fp, "myfile.txt", "a+, ccs=UNICODE");
 if (errcode != 0)
 {
 throw new native_exception;
 }
 }

 void OutputText(const wchar_t* text)
 {
 if (fp)
 {
 wprintf(text);
 fwprintf(fp, text);
 }
 else
 {
 throw new native_exception;
 }
 }

 void TimeStamp()
 {
 tm newtime;
 __time32_t time;
 wchar_t time_text[TIME_BUFFER_SIZE];
 _time32(&time);
 _localtime32_s(&newtime, &time);
 _wasctime_s(time_text, TIME_BUFFER_SIZE, &newtime);

Hogenson_705-2C12.fm Page 345 Wednesday, October 18, 2006 5:13 PM

346 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 if (fp)
 {
 wprintf(time_text);
 fwprintf(fp, time_text);
 }
 else
 {
 throw new native_exception;
 }
 }

 ~NativeClass()
 {
 printf("Closing the file.\n");
 if (fp)
 {
 fclose(fp);
 }
 }
};

// A reference type enclosing a Native Class
ref class R
{
 native_root<NativeClass> n;

 public:

 R() { }

 // Marshal the String to a Unicode string
 // and pass the pointer to the native class method
 void OutputToFile(String^ s)
 {
 IntPtr ptr = Marshal::StringToHGlobalUni(s);
 n->OutputText(static_cast<wchar_t*>(ptr.ToPointer()));
 n->TimeStamp();
 Marshal::FreeHGlobal(ptr);
 }
};

int main()
{
 R^ r1 = gcnew R();
 r1->OutputToFile("Output through native class!\n");
 delete r1; // the file is closed

Hogenson_705-2C12.fm Page 346 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 347

 R r2;
 r2.OutputToFile("More output\n");
 // File is closed again when r2 is cleaned up.
}

The output of Listing 12-21 is something like the following:

Opening the file.
Output through native class!
Tue Sep 05 23:39:57 2006
Closing the file.
Opening the file.
More output
Tue Sep 05 23:39:57 2006
Closing the file.

Notice that a static member, StringToHGlobalUni of the Marshal class, is used to convert
from String to wchar_t*. This creates a new wide character array and returns a pointer to it in
the form of an IntPtr, which must be freed. We can free the memory with Marshal::FreeHGlobal to
say in managed code rather than calling the native API GlobalFree to free the memory. IntPtr has
the ToPointer method, which returns a void pointer that we then cast to the desired type for the
managed function call.

Native and Managed Entry Points
A native function is said to have a native entry point, which is its address. Similarly, a managed
function has a managed entry point. A function that may be called by both native and managed
code has two separate entry points, one that is the actual function, and another that is a small
compiler-generated function known as a thunk, which handles the context switch between
native and managed code, and then calls the real function.

You know that functions in Visual C++ have calling conventions specifying how parameters
are handled by a function—you looked at some earlier. The native calling conventions, such as
__cdecl, __stdcall, and __thiscall, specify certain ways of passing parameters. Managed
functions similarly have a calling convention, __clrcall, that characterizes the particulars
about how managed functions are called. A function with the __clrcall calling convention
only has a managed entry point. There is no native entry point generated for it.

The calling convention for managed functions, and hence the set of entry points that get
generated for a function, depends on the compilation mode. In pure mode and safe mode,
__clrcall is the default for all managed functions. If you compile in safe mode or pure mode,
a managed function will be generated with a managed entry point only, because in those modes,
there is no native code that would require a native entry point. However, when you compile in
mixed mode (/clr), as is likely in an interop scenario, both native and managed entry points
are generated. This is because the calling convention is a native calling convention (__thiscall
for methods and likely __cdecl for global functions, but this may be changed by a compiler option).

Hogenson_705-2C12.fm Page 347 Wednesday, October 18, 2006 5:13 PM

348 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

If you use __declspec(dllexport) on a managed function, which causes it to be made
available to callers outside the DLL, you create a native entry point that can be used by native
callers that can then use __declspec(dllimport) to reference the function.

How to Avoid Double Thunking
You should be cognizant of the subtleties involved in native and managed entry points, because of
the concern that you could make unnecessary context switches between native and managed
code, if you aren’t careful to avoid it. The scenario of concern is calling a managed function via
a native entry point from managed code, rather than the far more efficient route of calling the
managed entry point directly. The existence of the native entry point makes it a possible route
that your managed code can use to access the function. If you call a function in this way, you
have to first switch to native code to access the native entry point, which is a small piece of code
called a thunk, and then you have to switch to managed code to call the managed function,
another thunk. All this unnecessary switching between contexts is known as double thunking
and can really slow down an application.

The compiler will try to get the right entry point; however, it sometimes needs some help.
Using the __clrcall calling convention is one way to avoid the problem. You can use the
__clrcall calling convention on a managed function as long as you don’t need to call your
function from native code. If there’s no native entry point, then there’s no way it can be used
improperly. The __clrcall calling convention is only needed when compiling in mixed mode
(with /clr), because in pure mode and safe mode, the default is __clrcall and no native entry
point is generated anyway.

In the other situation where double thunking can occur (exporting a managed function
from a DLL), you should avoid using __declspec(dllexport) and __declspec(dllimport) to
invoke managed functions from managed code. Instead, you should use #using to reference
the managed assembly.

Managed and Native Exceptions
You might be wondering, if you have managed code calling into native code, how do errors and
exceptions get propagated from native code to managed code? In this section you explore this.

Interop with Structured Exceptions (__try/__except)
Structured Exception Handling (SEH) is used on the Windows platform in C and C++ for many
hardware and software error conditions. Possible error codes are listed in the Windows headers.
If an SEH exception is allowed to propagate into managed code, it is wrapped as a .NET exception
of some type. Many structured exceptions are mapped to specific .NET exception types. For
example, EXCEPTION_INT_DIVIDE_BY_ZERO is mapped to DivideByZeroException. If there is no
specific mapping, a System::Runtime::InteropServices::SEHException is generated.

In Listing 12-22, two ways of handling structured exceptions are demonstrated. The excep-
tion in native code is an integer division by zero. In the first branch, the exception is allowed to
propagate to managed code and is caught as an SEHException. In the second branch, it is caught as
a native SEH exception in a __try/__catch statement.

Hogenson_705-2C12.fm Page 348 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 349

Listing 12-22. Handling Structured Exceptions

// try_except.cpp
#include <stdio.h>
#include <windows.h> // for EXCEPTION_INT_DIVIDE_BY_ZERO
#include <excpt.h>

using namespace System;
using namespace System::Runtime::InteropServices;

#pragma unmanaged
void generate_SEH_exception()
{
 int i = 0;
 // Divide by zero generates an SEH exception.
 int x = 2 / i;
}

void generate_AV()
{
 int *pn = 0;
 int n = *pn; // generates an access violation
}

int filter_div0(unsigned int code, struct _EXCEPTION_POINTERS *ep)
{

 if (code == EXCEPTION_INT_DIVIDE_BY_ZERO)
 {
 return EXCEPTION_EXECUTE_HANDLER;
 }
 else
 {
 return EXCEPTION_CONTINUE_SEARCH;
 };
}

// This must be a native function because __try/__except is not
// allowed in the same function as code that uses try/catch.
void try_except(bool bThrowUnhandledAV)
{
 __try
 {
 if (bThrowUnhandledAV)
 generate_AV();
 else
 generate_SEH_exception();
 }

Hogenson_705-2C12.fm Page 349 Wednesday, October 18, 2006 5:13 PM

350 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 __except(filter_div0(GetExceptionCode(), GetExceptionInformation()))
 {
 printf_s("Divide by zero exception caught via SEH __except block.");
 }
}

#pragma managed

int main(array<String^>^ args)
{
 if (args->Length < 1)
 {
 Console::WriteLine("Usage: try_except [NET|SEH|AV]");
 return -1;
 }
 if (args[0] == "NET") // Demonstrate catching SEH as a .NET Exception
 {
 try
 {
 generate_SEH_exception();
 }
 catch(DivideByZeroException^ e)
 {
 Console::WriteLine(e->ToString());
 }
 }
 else if (args[0] == "SEH") // Demonstrate handling SEH exception natively.
 {
 // Call native function with try/except block
 // and filter out division by zero exceptions.
 try_except(false);
 }
 else if (args[0] == "AV") // Demonstrate filtering of what exceptions to handle
 // natively and what to allow through.
 {
 try
 {
 // AVs, however, are not filtered and are allowed
 // to propagate to managed code.
 try_except(true);
 }
 catch(AccessViolationException^ e)
 {
 Console::WriteLine(e->ToString());
 }
 }
}

Hogenson_705-2C12.fm Page 350 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 351

The output of Listing 12-22 with the command line try_except NET is

System.DivideByZeroException: Attempted to divide by zero.
 at generate_SEH_exception()
 at main(String[] args

the output with the command line try_except SEH is

Divide by zero exception caught via SEH __except block.

and the output with the command line try_except AV is

System.AccessViolationException: Attempted to read or write protected memory.
This is often an indication that other memory is corrupt.
 at try_except(Boolean)
 at main(String[] args)

Note that you cannot include CLR exception handling in the same function as structured
exception handling, since the two mechanisms are not compatible and, if used together, would
corrupt the stack. However, as the version with the access violation demonstrates, you can
filter on what exceptions you want SEH to handle and handle others in managed code.

Interop with Win32 Error Codes
You cannot simply call GetLastError via P/Invoke after a Windows API call and expect to get the
error code corresponding to the Win32 function invoked on the last P/Invoke call, because there is
no guarantee that between the function call of interest and the call to GetLastError any error value
is preserved. The proper way to get at the error code is to call Marshal::GetLastWin32Error,
as shown in Listing 12-23.

Listing 12-23. Handling Win32 Error Codes

// getlasterror.cpp

#using "System.dll"

using namespace System;
using namespace System::ComponentModel; // for Win32Exception
using namespace System::Runtime::InteropServices;

[DllImport("kernel32.dll", SetLastError=true)]
extern bool SetVolumeLabel(String^ lpRootPathName, String^ lpVolumeName);

Hogenson_705-2C12.fm Page 351 Wednesday, October 18, 2006 5:13 PM

352 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

bool TestGetLastWin32Error()
{
 if (SetVolumeLabel("BAD:\\", "VolumeName"))
 {
 System::Console::WriteLine("Success!");
 return true;
 }
 else
 {
 throw gcnew Win32Exception(Marshal::GetLastWin32Error());
 }
 return false;
}

int main()
{
 try
 {
 TestGetLastWin32Error();
 }
 catch(Win32Exception^ e)
 {
 Console::WriteLine(e->ToString());
 }
}

The output of Listing 12-23 is as follows:

System.ComponentModel.Win32Exception: The filename, directory name, or volume
label syntax is incorrect
 at TestGetLastWin32Error()
 at main()

Interop with C++ Exceptions
C++ exception handling can exist alongside CLR exception handling. You can use subsequent
catch blocks, with C++ exceptions in some catch filters and CLR exceptions in other catch
filters. Remember that in Chapter 10 you saw what happens when throwing a type that does
not derive from System::Exception to code in another .NET language. In that case, the nonex-
ception type was wrapped as a RuntimeWrappedException. Wrapping also occurs when a native
type is thrown from native code—it is wrapped as SEHException in C++/CLI managed code and,
if not caught by a matching catch block, will be caught by catch filters that match SEHException,
ExternalException (the base class of SEHException), or Exception. Listing 12-24 shows the
behavior with both a throw by value and via a native pointer.

Hogenson_705-2C12.fm Page 352 Wednesday, October 18, 2006 5:13 PM

C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y 353

Listing 12-24. Coexistent C++ and CLR Exception Handling

// native_exception.cpp
#include <wchar.h>

using namespace System;
using namespace System::Runtime::InteropServices;

#pragma unmanaged

class NativeException
{
 wchar_t m_str[1024];

 public:

 NativeException(wchar_t* s)
 {
 wcscpy_s(m_str, s);
 }

 const wchar_t* GetMessage() { return m_str; }
};

void throw_native_exception(bool byval)
{
 if (byval)
 throw NativeException(L"Native Exception By Value");
 else
 throw new NativeException(L"Native Exception on Native Heap");
}

#pragma managed

int main()
{
 bool byval = true;

 try
 {
 throw_native_exception(byval);
 }
 catch(NativeException& native_exception)
 {
 wprintf(L"Caught NativeException: %s\n", native_exception.GetMessage());
 }

Hogenson_705-2C12.fm Page 353 Wednesday, October 18, 2006 5:13 PM

354 C H A P T E R 1 2 ■ I N T E R O P E R A B I L I T Y

 catch(SEHException^ e)
 {
 Console::WriteLine("{0}\nErrorCode: 0x{1:x}",
 e->ToString(), e->ErrorCode);
 }

 byval = false;

 try
 {
 throw_native_exception(byval);
 }
 catch(NativeException* native_exception)
 {
 wprintf(L"Caught NativeException: %s\n", native_exception->GetMessage());
 }
 catch(SEHException^ e)
 {
 Console::WriteLine("{0}\nErrorCode: 0x{1:x}",
 e->ToString(), e->ErrorCode);
 }
}

The output Listing 12-24 is shown here:

Caught NativeException: Native Exception By Value
Caught NativeException: Native Exception on Native Heap

Interop with COM HRESULTs
A COM HRESULT is wrapped as an exception. It may appear as a specific exception type, such as
OutOfMemoryException for the HRESULT E_OUTOFMEMORY, or, if there is no specific mapping provided,
as a COMException, which has an ErrorCode property that has the original HRESULT value.

Summary
This chapter covered various aspects of interoperability—interop with other .NET languages,
interop with native code including P/Invoke, the various compilation modes available, and
how to expose native code to other .NET languages. The text touched briefly on COM interop.
You also saw pointer types useful in interop, such as interior_ptr and pin_ptr, native and
managed entry points, the __clrcall calling convention, double thunking and how to avoid it,
how to include a native class in a managed class, how to include a managed class in a native
class with gcroot and auto_gcroot, and finally, how exceptions and errors in native code
surface in managed code.

Hogenson_705-2C12.fm Page 354 Wednesday, October 18, 2006 5:13 PM

355

■ ■ ■

A P P E N D I X

Quick Reference

This appendix covers the new keywords introduced in C++/CLI, specifies which are also reserved
words, and defines and lists contextual keywords and whitespaced keywords. This appendix
includes a reference table for features available in native, mixed, pure, and safe modes. You’ll
also find a summary of the syntax introduced in C++/CLI.

Keywords and Contextual Keywords
Some new keywords were introduced in the C++/CLI bindings. Many new keywords introduced
in C++/CLI are sensitive to the context in which they are used, so as to avoid creating new reserved
words in order not to interfere with existing identifiers. When used in the proper syntactic position,
contextual keywords are interpreted with the keyword meaning. When used in any other posi-
tion, they may be used as identifiers. This enables your code to continue to use a variable that
happens to collide with a C++/CLI contextual keyword without any special marking or modifi-
cation. This also enables C++/CLI to use keywords that otherwise would be common variable
names. There are several new keywords that are not contextual, as described in Table A-1: gcnew,
generic, and nullptr. Table A-2 shows the new contextual keywords.

Table A-1. C++/CLI Keywords

Keyword Description Usage

gcnew Allocates instances of reference
types on the garbage-collected
(managed) heap

R^ r = gcnew R();

generic Declares a parameterized type
(generic) that is recognized by
the runtime

generic <typename T> ref class G { /* ... */ };

nullptr Evaluates to the null value for
a pointer, indicating an
unassigned pointer

R^ r = nullptr;

Hogenson_705-2AppA.fm Page 355 Wednesday, October 18, 2006 5:16 PM

356 A P P E N D I X ■ Q U I C K R E F E R E N C E

Whitespaced Keywords
Some of the keywords in C++/CLI are two words containing whitespace, which are referred to
as whitespaced keywords. For example, ref class is a whitespaced keyword. Spaces and tabs
may be used between the two words, but comments (despite technically being whitespace
after preprocessing) may not be used. Table A-3 lists the whitespaced keywords of C++/CLI.

Table A-2. C++/CLI Contextual Keywords

Contextual
Keyword

Description Usage

abstract Declares a class that has some
unimplemented methods, used as a
base class. Objects cannot be instan-
tiated from this class. When used on
a method, declares that the method
will not be implemented.

ref class Base abstract { /* ... */ };

delegate Declares an object that represents
a type-safe function pointer.

delegate void MyDelegate(int);

event Declares an event, an occurrence
that triggers method calls.

event EventHandler ClickEvent;

finally Captures program flow after a
try/catch block.

finally { /* ... */ }

in Used in the for each statement. for each (R^ r in collection)
{ /* ... */ }

initonly Specifies a field that can only be
modified in a constructor.

initonly int i;

internal Specifies that access to a member
is restricted to within an assembly.

public ref class R
{ internal: void f(); }

literal Specifies a value that is a
literal constant.

literal int SIZE = 150;

override Indicates that a function is intended
to be a virtual override of the base
class function of the same name.

virtual int f(int a, int b) override;

property Declares a field-like member
on a type.

property int P;

sealed Indicates a type that cannot be used
as a base class or a method cannot
be overridden.

virtual int f(int a, int b) sealed;

where Used in the declaration of generics
to specify constraints on the types
that may be used as type arguments
for a generic type or function.

generic <typename T> where T : R
ref class G { /* ... */};

Hogenson_705-2AppA.fm Page 356 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 357

Keywords As Identifiers
You can specify __identifier to use a keyword as an identifier. Use it when you migrate
existing code to C++/CLI that uses one of the new keywords: gcnew, generic, or nullptr, or if
you are dealing with another code from another language that has an identifier that matches a
C++/CLI keyword, as in Listing A-1.

Listing A-1. Using __identifier

// identifier.cpp
using namespace System;

int main()
{
 int __identifier(switch) = 10;

 __identifier(switch)++;

Table A-3. Whitespaced Keywords

Whitespaced
Keyword

Description Usage

enum class Declares an enumeration
with all members public

enum class Color { Red, Green, Blue};

enum struct Declares an enumeration
with all members public

enum struct Color { Red, Green, Blue };

for each Used to iterate over
collection classes

for each (R^ r in collection) { /* ... */ }

interface class Declares an interface with
all members public

interface class I { /* ... */ };

interface struct Declares an interface with
all members public

interface struct I { /* ... */ };

ref class Declares a managed type
 with private default
accessibility

ref class R { /* ... */ };

ref struct Declares a managed
struct with public
default accessibility

ref struct S { /* ... */ };

value class Declares a value type
with private default
accessibility

value class V { /* ... */ };

value struct Declares a value type
with public default
accessibility

value struct S { /* ... */ };

Hogenson_705-2AppA.fm Page 357 Wednesday, October 18, 2006 5:16 PM

358 A P P E N D I X ■ Q U I C K R E F E R E N C E

 switch(__identifier(switch))
 {
 case 10:
 break;
 case 11:
 Console::WriteLine("Switch is {0}", __identifier(switch));
 break;
 default:
 break;
 }

}

The output of Listing A-1 is as follows:

Switch is 11

The following sections describe features not otherwise covered in this book: how to detect
CLR compilation, and XML documentation comments.

Detecting CLR Compilation
Listing A-2 demonstrates how to detect CLR compilation.

Listing A-2. Detecting CLR Compilation

// detecting_clr.cpp
#include <stdio.h>
int main()
{
#ifdef _MANAGED
 System::Console::WriteLine("Must be compiling with /clr...");
#else
 printf("Not compiling with /clr.");
#endif
}

The output of Listing A-2 is as expected with or without the /clr option:

C:\code\appendix>cl /clr detecting_clr.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 14.00.50727.42
for Microsoft (R) .NET Framework version 2.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

Hogenson_705-2AppA.fm Page 358 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 359

detecting_clr.cpp
Microsoft (R) Incremental Linker Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

/out:detecting_clr.exe
detecting_clr.obj

C:\code\appendix>detecting_clr
Must be compiling with /clr...

C:\ code\appendix>cl detecting_clr.cpp
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

detecting_clr.cpp
Microsoft (R) Incremental Linker Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

/out:detecting_clr.exe
detecting_clr.obj

C:\ code\appendix>detecting_clr
Not compiling with /clr.

XML Documentation
XML files may be generated from code comments written in the CLR XML doc format by writing
comments in the format in code and compiling with the /doc compiler option. You can use
these XML files to generate formatted documentation. The tool xdcmake.exe is used to generate
the XML files from doc comments. Table A-4 lists the XML tags available.

Table A-4. XML Doc Comment Reference

XML Tag Description

<c>inline code</c> Inline code

<code>code block</c> Lines of code

<example>example section</example> Defines a section containing text
description and an optional code
example

<exception cref="member">description</exception> Specifies exceptions that may
be generated

<include file="filename" path="tagpath"> Includes XML comments from a file

<list> Defines a bulleted or numbered list
or table

Hogenson_705-2AppA.fm Page 359 Wednesday, October 18, 2006 5:16 PM

360 A P P E N D I X ■ Q U I C K R E F E R E N C E

Listing A-3 illustrates the use of the XML comment format and the generation of XML
documentation from the comments.

Listing A-3. Using XML Documentation

// xml_comments.cpp
// compile with: /LD /clr /doc
// then run: xdcmake xml_comments.xdc

using namespace System;

/// Ref class R demonstrates XML Documentation Comments.
/// <summary> A class demonstrating documentation comments </summary>
/// <remarks> A detailed description of R goes into the remarks block
/// </remarks>
public ref class R
{
public:
 /// <summary>F is a method in the R class.
 /// <para>You can break the comments into paragraphs.
 /// <see cref="R::G"/> for related information.</para>
 /// <seealso cref="R::G"/>
 /// </summary>
 void F(int i) {}

<para>text</para> Defines a paragraph

<param>description</param> Describes a function parameter

<paramref name="name"> Specifies a hyperlink to
the parameter

<permission cref="member"> Specifies access (e.g., public)

<remarks>description</remarks> Specifies the detailed description

<returns>description</returns> Specifies the return
value information

<see cref="member"> Specifies a cross-reference

<seealso cref="member"> Lists additional references

<summary>text</summary> Specifies text that gives a
brief synopsis

<value>description</value> Specifies a property description

Table A-4. XML Doc Comment Reference (Continued)

XML Tag Description

Hogenson_705-2AppA.fm Page 360 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 361

 /// The method G is a method in the R class.
 /// <summary>Counts the number of characters in two strings.</summary>
 /// <param name="s1"> Description for s1</param>
 /// <param name="s2"> Description for s2</param>
 /// <returns>The sum of the length of two strings.</returns>
 int G(String^ s1, String^ s2){ return s1->Length + s2->Length; }
};

Listing A-3 is compiled with

cl /clr /doc /LD xml_comments.cpp

The documentation comments are generated with

xdcmake xml_comments.xdc

The resulting xml_comments.xml file, with some minor whitespace alterations, is as follows:

<?xml version="1.0"?>
<doc>
 <assembly>
 xml_comments
 </assembly>
 <members>
 <member name="M:R.G(System.String,System.String)">
 The method G is a method in the R class.
 <summary>Counts the number of characters in two strings.
 </summary>
 <param name="s1"> Description for s1</param>
 <param name="s2"> Description for s2</param>
 <returns>The sum of the length of two strings.</returns>
 </member>
 <member name="M:R.F(System.Int32)">
 <summary>F is a method in the R class.
 <para>You can break the comments into paragraphs.
 <see cref="M:R.G(System.String,System.String)" />
 for related information.
 </para>
 <seealso cref="M:R.G(System.String,System.String)" />
 </summary>
 </member>
 <member name="T:R">
 Ref class R demonstrates XML Documentation Comments.
 <summary> A class demonstrating documentation comments </summary>
 <remarks> A detailed description of R goes into the remarks block
 </remarks>
 </member>
 </members>
</doc>

Hogenson_705-2AppA.fm Page 361 Wednesday, October 18, 2006 5:16 PM

362 A P P E N D I X ■ Q U I C K R E F E R E N C E

It is up to you to then render this in the desired user-friendly documentation format. For
example, you could generate documentation in various formats using a tool such as Sandcastle,
available from the Microsoft download center (http://www.microsoft.com/downloads).

Summary of Compilation Modes
This book has covered many aspects of the various modes, but not all. Table A-5 summarizes
the features available in each compilation mode.

Table A-5. Features Available in Various Compilation Modes

Feature Native Mixed Pure Safe

Define and use native types Yes Yes Yes No

Define and use managed types No Yes Yes Yes

Define native functions Yes Yes No No

Define managed functions No Yes Yes Yes

Native instructions* Yes Yes No No

Managed instructions (IL) No Yes Yes Yes

Build 32-/64-bit
agnostic assemblies

No No No Yes

Use the NET Framework No Yes Yes Yes

Use the CRT Yes Yes MSIL CRT No

Use the Standard C++ Library Yes Yes MSIL version No

Use ATL Yes Yes No No

Use MFC Yes Yes No No

App domain aware No No Yes Yes

Reflection on built assembly No DLLs only Yes Yes

Call functions via P/Invoke N/A Yes Yes Yes

Use unsafe casts** Yes Yes Yes No

Include native header Yes Yes Depends
on header

No

Include managed header No Yes Yes Yes

#using managed assembly No Yes Yes Yes

#import COM typelib/DLL Yes Yes No No

Compile C code Yes No No No

Floating-point control
(__controlfp, etc)

Yes No No No

std::set_terminate and SIGTERM Yes No No No

Hogenson_705-2AppA.fm Page 362 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 363

* Inline asm, most compiler intrinsics
** Including downcasts with static_cast and all uses of reinterpret cast
† Not detected by Visual C++ 2005 compiler
†† Not in the same function as managed or C++ exception handling

Syntax Summary
In these examples, assume R is a reference type (ref class) and V is a value type (value class),
I is an interface (interface class), and P is a property (property int P). Also assume r is a
handle to R and v is an instance of V. Assume i, j, and k are integer fields or local variables, s is
a handle to String, and ai is a one-dimensional managed array of integers. Assume Base and
Derived are reference classes in an inheritance relationship. Assume d is typed as a handle to
Derived and b has type handle to Base, but could be an actual instance of a Base or Derived
object, or nullptr.

The order of the examples is the order in which they are covered in the text.

Handle

R^ r; // Declare a handle.
R r1 = *r; // Dereference a handle.
i = r1->P; // Access a member using the -> operator.

Nonvirtual calls to virtual functions Yes Yes Yes No†

Command-line arguments in main Yes Yes Yes No

Throw exceptions by value Yes Yes Yes No

Pointer arithmetic on
interior pointers

No Yes Yes No

Explicit keyword For
constructors

For
conversions

For
conversions

No

Export native functions
(__declspec(dllexport))

Yes Yes No No

Import native functions
(__declspec(dllimport))

Yes Yes Yes No

Custom alignment
(__declspec(align))

Yes No No No

__declspec(naked) Yes Yes Yes No

#pragma unmanaged No Yes No No

#pragma pack Yes Yes Yes No

__based Yes Yes Yes No

Structured Exception Handling Yes†† Yes†† Yes†† No

Table A-5. Features Available in Various Compilation Modes

Feature Native Mixed Pure Safe

Hogenson_705-2AppA.fm Page 363 Wednesday, October 18, 2006 5:16 PM

364 A P P E N D I X ■ Q U I C K R E F E R E N C E

Tracking Reference

// Declare a tracking reference and initialize to dereferenced handle.
R% rref = *r;
i = rref.P; // Access a member using the . operator.

The gcnew Keyword

R^ r = gcnew R; // gcnew using default constructor
r = gcnew R(); // gcnew using default constructor
r = gcnew R(100, "xyz"); // gcnew with args

The nullptr Keyword

r = nullptr; // Set handle to null.

The main Method

int main(array<String^>^ args)
{
 /* body of main method */
 return i; // optional return statement
}

Managed Arrays

// Declare an array of reference types but don't create it.
array<R^>^ refArray;
// Declare array of value types but don't create it.
array<V>^ valueArray;
// Declare and create 1D array of integers with size
// determined by given initial values.
array<int>^ ai = gcnew array<int> { 0, 1, 2, 3 };
// Declare and create 1D array of integers with given size.
array<int>^ ai = gcnew array<int>(4);
// array with two dimensions, four by two
array<int, 2>^ ai2d = gcnew array<int, 2>(4, 2)
 { { 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7} };

The for each Statement

// for each statement for array of integers
for each (int i in ai) { /* body */ }
// for each statement for collection of ref objects
for each (R^ r in rCollection) { /* body */ }

Hogenson_705-2AppA.fm Page 364 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 365

Reference Classes

ref class R { /* body */ };
// public abstract ref class inheriting from Base
[SomeAttribute]
public ref class R abstract : Base { /* class body */ };

Value Classes

value class V { /* class body */ };
// value class inheriting from interface I
[SomeAttribute]
public value class V : I { /* class body */ };

Enum Classes

// enum with some values
enum class MyEnum { Zero, One, Two, Three = 3, Ten = 10 };
// enum with char as underlying type
enum class MyEnum : char { Zero, One, Two };

Interface Classes

interface class I { /* class body */ };
public interface class I : IBase { /* class body */ };

Safe Cast

try
{
 d = safe_cast<Derived^>(b);
}
catch(InvalidCastException^ e)
{
 // Handle the exception.
}

Dynamic Cast

d = dynamic_cast<Derived^>(b);
if (d == nullptr) { /* cast failed*/ }

Static Cast

unsigned int u;
i = static_cast<int>(u); // no overflow check
int* pi;
void* pv;
pi = static_cast<int*>(pv);

Hogenson_705-2AppA.fm Page 365 Wednesday, October 18, 2006 5:16 PM

366 A P P E N D I X ■ Q U I C K R E F E R E N C E

Const Cast

const wchar_t* cwcs = L"xyz";
wchar_t* wcs = const_cast<wchar_t*>(cwcs);

C-Style Cast

Base^ b = gcnew Derived();
try
{
 d = (Derived^) b; // evaluates to safe_cast<Derived^) (b);
}
catch(InvalidCastException^ e)
{
 // Handle the exception.
}

Access Modifiers

public ref class R { };

private ref class R { };

ref class R
{
 public:
 void F() {}

 private:
 void G() {}

 protected:
 void H() {}

 internal:
 void I() {}

 protected private:
 void K() {}

 protected public:
 void L() {}
};

Hogenson_705-2AppA.fm Page 366 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 367

Stack Semantics Declaration

void f()
{
 R r;
 r.P = 100; // Use the . operator to access a member.
}

Initonly Fields

ref class R
{
 initonly int i;
 public:
 R() i(5) { }
};

Literal Fields

ref class R
{
 literal int SIZE = 100;
 literal String^ NAME = "Test";
};

Static Constructor

ref struct R
{
 private:
 static R() { /* body */ }
};

Finalizer

ref struct R
{
 ~R() { this->!R(); } // implements IDispose::Dispose
 !R() { /* finalizer body */ }
};

Hogenson_705-2AppA.fm Page 367 Wednesday, October 18, 2006 5:16 PM

368 A P P E N D I X ■ Q U I C K R E F E R E N C E

Properties

ref struct R
{
 property int P1; // trivial property
 // nontrivial property with int backing store
 int value;
 property int P2
 {
 int get() { return value; }
 void set(int i) { value = i; }
 }
 // indexed property
 array<String^>^ names; // backing store
 property String^ P[int]
 {
 String^ get(int index) { return names[index]; }
 void set(int index, String^ s) { names[index] = s; }
 }
 // default indexed property
 property String^ default[int]
 {
 String^ get(int index) { return names[index]; }
 void set(int index, String^ s) { names[index] = s; }
 }
};

Delegates

// Declare delegate type.
delegate void MyDelegate(int, String^);

void f()
{
 // Create delegate to method F on object r.
 MyDelegate^ del = gcnew MyDelegate(r, &R::F);
 del += gcnew MyDelegate(r, &R::G); // Add target function.
 del -= gcnew MyDelegate(r, &R::G); // Remove target function.
 del += gcnew MyDelegate(&R::StaticMethod); // Add static method.
 del(100, "xyz"); // Invoke delegate.
 del->Invoke(200, "abc"); // Invoke delegate.
}

Hogenson_705-2AppA.fm Page 368 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 369

Events

ref class R
{
 public:
 event EventHandler^ E1; // trivial event
 EventHandler^ evt;
 event EventHandler^ E2
 {
 void add(EventHandler^ e)
 {
 evt += e;
 }
 void remove(EventHandler^ e)
 {
 evt -= e;
 }
 void raise(Object^ o, EventArgs^ args)
 {
 evt(o, args);
 }
 }

 void F(Object^ o, EventArgs^ args) { /* event handler body */ }

 void f()
 {
 E1 += gcnew EventHandler(r, &R::F);
 }
};

Static Operators

ref class R
{
 // member operator:
 R^ operator+(int i) { /* body */ }

 // static operator:
 static R^ operator+(int i, R^ r)
 {
 return r + i; // Call member operator + (above).
 }
};

Hogenson_705-2AppA.fm Page 369 Wednesday, October 18, 2006 5:16 PM

370 A P P E N D I X ■ Q U I C K R E F E R E N C E

Virtual Functions

ref struct Base
{
 virtual int f(int i) { /* ... */ }
 virtual void g(String^ s) { /* ... */ }
};
ref struct Derived : Base
{
 virtual int f(int i) override { /* body */ } // Override Base::f.
 virtual void g(String^ s) new { /* body */ } // no override
};

Abstract Classes

ref struct R abstract
{
 virtual void F(int, String^) abstract;
};

Abstract Methods

ref struct R
{
 virtual void F(int, String^) abstract;
};

Sealed Classes

ref struct Base
{ virtual void F(int i) { /* method body */} };

ref class Derived sealed : Base
{
 public:
 virtual void F(int i) override { /* method body */ }
};

Sealed Methods

ref struct Base { virtual void F(int i) { /* body */ } };
ref struct Derived : Base { virtual void F() sealed { /* body */ } };

Hogenson_705-2AppA.fm Page 370 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 371

Interface Implementation

interface class I
{
 int F(int i, String^ s);
 void g();
};
ref class R : I
{
 public:
 virtual int F(int i, String^ s) { /* implement I::F */ }
 virtual void g() { /* implement I::g */ }
};

Explicit Interface Implementation

interface class I
{
 int F(int i, String^ s);
 void g();
};
ref class R : I
{
 public:
 virtual int F(int i, String^ s) = I::F
 { /* implement I::F */ }
 virtual void x() = I::g { /* implement I::g */ } // possibly different name
};

Exceptions

R^ r = gcnew R();
try
{
 if (/* ... */)
 throw gcnew SomeException();
}
catch(SomeException^ e)
{
 // Handle SomeException;.
}
catch(SomeOtherException^ e)
{
 // Handle SomeOtherException.
}

Hogenson_705-2AppA.fm Page 371 Wednesday, October 18, 2006 5:16 PM

372 A P P E N D I X ■ Q U I C K R E F E R E N C E

finally
{
 // Clean up code.
 if (r != nullptr)
 delete r;
}

Attributes

// attribute intialized with constructor applied to method f
[SomeAttribute("Arg1", "Arg2")] void f();
// attribute initialized with public properties P and Q
[SomeAttribute(P = "Arg1", Q = "Arg2")] void f();
// attribute applied to return value (target syntax)
[returnvalue : SomeAttribute()] R^ f(int i);

Type Identification

Type^ type = R::typeid; // Get static type from class.
Type^ type = r->GetType(); // Get dynamic type from object.

Managed Template Classes

template <typename T> // or template < class T>
public ref class R
{
 T t; // type parameter as a member
 public:
 // method using type parameter in parameter list
 void f(T t, array<T>^ a)
 { /* method body */ }
 /* class body */
};

Managed Template Functions

template < typename T >
int TemplateFunction(T t) { /* body */ };

Generic Classes

generic <typename T> // or generic < class T>
where T : I
ref class G
{
 /* body of generic class */
};

Hogenson_705-2AppA.fm Page 372 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 373

generic < typename T, typename U >
where T : R, gcnew() // multiple constraints on one type parameter
where U : value class // constraints on multiple type parameters
public ref class G abstract
{
 /* body of generic abstract class */
 T t; // reference type handle
 U u; // value type object
 public:
 G() { t = gcnew T(); }
};

Generic Functions

generic <typename T>
[SomeAttribute] // Attributes go after the generic preamble.
T f(array<T>^ at)
{ /* method body */ }

int g()
{
 array<int>^ a;
 // call generic function
 return f<int>(a);
}

Interior Pointers and Pinning Pointers

ref struct R
{
 array<int>^ a;
 public:
 int f()
 {
 int sum = 0;
 // interior pointer
 interior_ptr<int> pi = &a[0];
 for (int i = 0; i < a->Length; i++)
 {
 // using pointer arithmetic
 sum += *pi++;
 }
 return sum;
 }

Hogenson_705-2AppA.fm Page 373 Wednesday, October 18, 2006 5:16 PM

374 A P P E N D I X ■ Q U I C K R E F E R E N C E

 int g()
 {
 // pinning pointer
 pin_ptr<int> pinp = &a[0];
 return native_function(pinp);
 }
};

The auto_handle Template

#include <msclr\auto_handle.h>
using namespace msclr;
auto_handle<R> auto_r = R::ReturnHandleToNewR();

The lock Class

#include <msclr\lock.h>
using namespace msclr;
void f(R^ r)
{
 lock lockr(r);
 /* sensitive code using r */
} // stack semantics, lock released

The gcroot Template

#include <msclr\gcroot.h>
using namespace msclr;
class N
{
 gcroot<R^> r;
 void f()
 {
 r = gcnew R();
 r->F(); // Call method F on r.
 }
};

Hogenson_705-2AppA.fm Page 374 Wednesday, October 18, 2006 5:16 PM

A P P E N D I X ■ Q U I C K R E F E R E N C E 375

The auto_gcroot Template

#include <msclr\auto_gcroot.h>
using namespace msclr;
class N
{
 auto_gcroot<R^> r;
 void f()
 {
 r = gcnew R();
 r->F(); // Call method F on r.
 }
}; // r's destructor is called when containing object is deleted.

Hogenson_705-2AppA.fm Page 375 Wednesday, October 18, 2006 5:16 PM

Hogenson_705-2AppA.fm Page 376 Wednesday, October 18, 2006 5:16 PM

377

Index

■Symbols and Numerics
! character, finalizers, 161

% operator/symbol, 52–53

C++/CLI stack semantics, 68

creating handle to object using %, 66

passing value types as handles, 68

passing value types by reference, 65

tracking references, 55

& (address-of) operator, 52

passing by reference in C++, 60

* operator, 54

+ operator, 79, 80, 205

+= operator, 22, 184, 194

-= operator, 22, 184, 185

.NET Developer Platform (NDP), 29–41

^ character see caret (^) character

^% indirection

passing handle by reference using, 54

64-bit programming

processor architecture dependence, 32

■A
abstract base classes

interface class compared, 19

abstract classes, 219–220

declaring abstract classes, 219, 220

declaring any function abstract, 219

interfaces compared, 220, 235–236

syntax, 370

using abstract and sealed keywords, 221

abstract keyword, 219, 220, 356

abstract methods, 370

access control

access levels for classes, 156–157

interfaces, 236

interfaces and access control, 244

protected access control specifier, 183

accessibility modifiers, 37, 156, 157

access modifier syntax, 366

accessor (add and remove) methods of
events, 191, 193

reserved names (add_E, remove_E), 203

accessor (get and set) methods of properties,
173–177

applying virtual keyword, 222, 223

different ways of defining properties, 22

interfaces with properties and events, 240

reserved names (get_P, set_P) for
properties, 203

setting but not getting properties, 183

using virtual accessors, 223

AccessViolationException, 260

Activator class

CreateInstance method, 280

add method, event handlers

customizing, 191, 193, 194

declaring events and event handlers, 193

reserved names (add_E) for events, 203

using delegate unrelated to
EventHandler, 197

addition operator, 79, 80

addressable entities, 56

addresses, arrays, 93

address-of operator

for managed types, 52

interior pointers, 339

Hogenson_705-2INDEX.fm Page 377 Friday, October 27, 2006 3:19 PM

378 ■I N D E X

AdjustPointTotals method, Scrabble
game, 137

aggregate types, 12–14

al.exe see assembly linker

alignment specifier, 82

AllowMultiple property, 279

AppDomain class, 284

application domains, 283–284

compilation modes available for, 362

multiple application domains, 283

architecture

processor architecture dependence, 32

argc arguments, main method, 9

ArgumentException, 260

iterating over dictionary collection, 309

proliferation of exception types, 269

arguments

argument lists of variable length, 107

CLS compliant alternative to varargs, 322

command line arguments, 9

ArithmeticException, 260

Array class

Copy method, 102

IList interface, 103

managed array class members, 103–106

methods, 104

properties, 103

ArrayList class, 108–110, 305–308

iterating with for each and with index, 307

trapping invalid cast exception, 306

using generic list, 110

using weakly typed/nongeneric
ArrayList, 305

arrays, 92–110

array address, 93

array of handles in Scrabble game, 127

ArrayList class, 108–110

arrays as parameters, 101–102

arrays in classes, 108

associative array, 308

converting string to character array, 78

copying, 102–103

creating one-dimensional arrays, 96

deletion and insertion of elements, 108

equality of, 106–107

for each traversing arrays, 98

generic array as parameter, 287

going past the end of, 100

indexed properties, 177

initializing array elements with
constructors, 95

initializing, 93–95

initializing part of, 96

interior pointers traversing arrays, 99

iterators traversing arrays, 97

Length property, 95

managed array class members, 103–106

managed arrays, 9, 92–110

accessing elements, 93

declaring, 92

using, 14

native and managed arrays compared,
100–101

navigating, 97–100

parameter arrays, 107–108

passing array of inconsistent size, 101

passing by reference, 102

pitfalls treating object on heap as if on
stack, 51

rank, 93

self-knowledge, 95

sorting and searching, 105

sparse array, 26

zero-based indices, 93

“as-a” relationship

abstract classes and interfaces
compared, 235

as_friend modifier, 39

AsReadOnly method, Array class, 104

Hogenson_705-2INDEX.fm Page 378 Friday, October 27, 2006 3:19 PM

379■I N D E X

Find it faster at http://superindex.apress.com

assemblies

assembly linker, 33

assembly using template type in public
interface, 311

compilation modes available for, 362

controlling access, 39

friend assemblies, 39

intra-assembly code, 312

introduction, 33

linking object files of different modes, 318

loading assembly and reflecting on
types, 280

metadata, 33

mixing managed/native classes/types, 318

modules, 33

multifile assemblies, 41

passing template class types over
assembly boundary, 311

referencing, 37, 39

reflection writing tools giving information
on, 282

resources and, 41

signed assemblies, 41

using template from another
assembly, 314

using template in another assembly, 312

using wrapper from C# assembly, 337

assembly attributes, 276–277

friend assemblies, 39

introduction, 40

assembly boundaries

managed templates and generics
compared, 316

Assembly class

GetTypes method, 279

interfaces and dynamically loaded types,
255, 257

LoadFrom method, 279

reflection calling methods, 284

assembly linker, 40, 41

assembly manifest, 33–37

viewing metadata with ILDasm.exe, 34–37

ASSEMBLYRESOURCE command-line
option, 41

assignment behavior

reference and value types compared, 118

assignment operator (=)

object semantics for reference types, 43

assignment statements, 56

associative array, 308

AsyncCallback class, 189

asynchronous delegates, 188–190

checking function completion, 189

AsyncResult class, 189

ATL (Active Template Library)

clr:pure mode, 31

compilation modes for, 362

atomic number, 12

Attribute class, 271

creating custom attributes, 277–279

GetCustomAttribute method, 279

attribute classes/constructors/parameters, 271

attribute properties, 279

Attribute suffix, omitting, 271

attributes, 270–279

assembly attributes, 40, 276–277

attribute target, 270

AttributeUsageAttribute, 279

creating custom attributes, 277–279

DllImport attribute, 322

how attributes work, 270

inheritance, 271

initializing attribute with properties, 278

MarshalAs attribute, 328

metadata, 270

module attributes, 276–277

NonSerialized attribute, 273

Obsolete attribute, 271–272

Out attribute, 272–273

Find it faster at http://superindex.apress.com

Hogenson_705-2INDEX.fm Page 379 Friday, October 27, 2006 3:19 PM

380 ■I N D E X

querying object attributes at runtime, 279

Serializable attribute, 273

serialization attributes, 273–275

syntax, 372

AttributeTargets property, 279

AttributeUsageAttribute, 279

auto_gcroot template, 159

destructor, 160

gcroot and auto_gcroot compared, 342

syntax, 375

auto_handle template, 58–60, 374

■B
bag list, Scrabble game, 131

base classes

calling base class constructor, 226

explicitly specifying implicit base
classes, 237

name collisions in inheritance
hierarchies, 212

order of initialization, 227, 228

using virtual functions in constructor, 229

based keyword, 363

BCL (base class library), 5

BeginInvoke method, Delegate class,
188, 189

BinarySearch method, Array class, 104, 105

Boolean type, 11

boxed value types, 321

boxing

generic collection classes, 290

implicit boxing and unboxing, 45–47

integer types, 45

literal values, 46

performance, 46

unboxing Object to integer, 46

value type converted to object, 46

value type inheritance, 212

value types, 44

Byte type, 11

■C
C code

compilation modes available for, 362

c tag, XML documentation, 359

C#

consuming wrapped global function in, 320

C++

aggregate types, 12

creating interface in C++, 320

“Hello World” program, 5

interop using C++ source code, 318

interop with C++ exceptions, 352–354

use of “classic C++” in this book, 2

using native libraries without P/Invoke, 329

C++/CLI

classes and structures compared, 9

enabling standard extensions, 3

“Hello World” program, 6

interoperability, 317

standard C++ functionality, 1

CalculateScore method, Scrabble game, 148

calling conventions

cdecl, 327

clrcall, 347

stdcall, 324

thiscall, 327

CallingConvention property, DllImport
attribute, 326

P/Invoke knowing calling convention, 324

carbon dating, 12

CardEnumerator class

Current property, 249

cards

enumerating playing cards, 249

caret (^) character

handles, 7

using two handle symbols, 10

using managed array type, 15

Hogenson_705-2INDEX.fm Page 380 Friday, October 27, 2006 3:19 PM

381■I N D E X

Find it faster at http://superindex.apress.com

casts

const_cast, 209

C-style casts, 208, 209

dynamic_cast, 208, 209

Enum class object conversions, 112

explicit casts, 206

implicit boxing and unboxing, 45

inheritance hierarchies, 233–234

InvalidCastException, 210, 260

reinterpret_cast, 209, 210

safe_cast, 209, 210, 112

static_cast, 208, 209

trapping invalid cast exception, 306

catching exceptions, 269

throwing objects, not exceptions, 268

cdecl calling convention, 327, 347

P/Invoke knowing calling convention, 324

chaining expressions involving properties, 174

Char type, 11

characters

converting string to character array, 78

Characters class, Scrabble game, 128

CharSet parameter, DllImport attribute

calling Win32 function in C++/CLI, 323

CIL (Common Intermediate Language) see IL

class constructor see static constructors

class keyword

type parameters, generics, 285

whitespaced keywords, 357

classes

.NET class features, 173–210

delegates, 184–190

events, 191–203

indexed properties, 177–184

operator overloading, 203–210

properties, 173–177

abstract classes, 219–220

abstract sealed class, 221

interfaces compared, 235

access levels for classes, 156–157

ArrayList class, 305–308

arrays in classes, 108

AsyncCallback class, 189

AsyncResult class, 189

Attribute class, 271

calling base class constructor, 226

class constraints, 297–298

class destruction and cleanup, 160–161

Complex class, 203

Dictionary class, 308

Enum class, 111

enumeration classes, 17–18

EventArgs class, 201

EventHandler class, 199

EventReceiver class, 200

EventSender class, 200

Exception class, 260

Exception classes, 262–263

indexed properties, 177–184

interface classes, 19–20

interface name collisions, 241

KeyValuePair class, 309

Marshal class, 328

multiple inheritance of class types, 211

order of initialization, 227

properties, 173–177

indexed properties, 177–184

reference classes, 14–15

sealed class syntax, 221

sealed classes, 220–222

serialization and deserialization, 275

StringBuilder class, 84–85

structures compared, 9, 117

Type class, 279

using virtual functions in constructor, 229

value classes, 15–17

classic C++

use of term in this book, 2

Hogenson_705-2INDEX.fm Page 381 Friday, October 27, 2006 3:19 PM

382 ■I N D E X

cleanup

class destruction and cleanup, 160–161

handling managed and unmanaged
resources, 167

cleanup code

finally block, 263, 269

Clear method, Array class, 104

CLI programming, 5

abstract classes and interfaces
compared, 235

interface inheritance model, 241

managed templates and generics
compared, 316

primitive types, 11–12

Clone method, Array class, 104

CLR (common language runtime)

CLR XML doc format, 359

detecting CLR compilation, 358

garbage collection, 1

link.exe, CLR programming, 40

setting compilation mode, 30

virtual machine, 3

clr compiler option see mixed mode

clr:oldSyntax compiler option see managed
extensions syntax

clr:pure compiler option see pure mode

clr:safe compiler option see safe mode

clrcall calling convention, 347, 348

CLS (Common Language Specification), 321

code substitutions, indexes, 81

code tag, XML documentation, 359

Collect method, GC class

pitfalls of finalizers, 170

using destructor and finalizer, 163

collection classes

.NET Framework container types, 304

ArrayList class, 305–308

Dictionary class, 308

generic collection classes, 290–295

generic/nongeneric container classes, 304

using collection class interfaces, 305

collections

backing property with collection, 180

collection owning and deleting objects, 302

Collections namespace, 304

Collections::Generic namespace, 304

COM interop, 318, 328–329

interop with COM HRESULTs, 354

COM libraries

import directive, 37

Combine method, Delegate class, 186

command line arguments

compilation modes available for, 363

using, 9

comments, XML documentation, 359

Common Intermediate Language (CIL), 3

common type system see CTS

Compare method, String class, 80, 81

CompareOrdinal method, String class, 81

CompareTo method

IComparable interface, 246

String class, 80, 81

comparing strings, 76, 80–81

compilation modes, 3

detecting CLR compilation, 358

features available for all modes, 362

Visual C++ 2005, 30–32

compiler options

clr (mixed mode), 31

clr:oldSyntax, 32

clr:pure (pure mode), 30

clr:safe (safe mode), 30

doc, 359

FU (Force Using), 38

LD, 39

LN, 33

compilers

compiler restrictions on generic types, 289

how compilers understand expressions, 56

managed templates and generics
compared, 315

Hogenson_705-2INDEX.fm Page 382 Friday, October 27, 2006 3:19 PM

383■I N D E X

Find it faster at http://superindex.apress.com

compile-time constants

const correctness, 126

literal fields, 123, 124

static constants, 124

Complex class

defining static operators, 205

representing complex numbers, 203

compound assignment operators (+=, -=,
etc.), 22

Concat method, String class, 76

concatenation of strings, 76, 79

ConfirmPlay method, Scrabble game, 144

connections

pitfalls of finalizers, 170

Console class, 86–87

basic I/O functions, 86

properties exposed for
stdin/stdout/stderr, 87

ReadLine method, 87

Scrabble game, 128

Write method, 86

WriteLine method, 81

const correctness, 126

const fields, managed classes, 121

const reference, 55

const_cast, 209, 366

constants, 118, 123

initonly fields, 124–125

ConstrainedCopy method, Array class, 104

constraints

adding to MyList and ListNode, 303

class constraints, 297–298

gcnew constraint, 300–301

generic types using, 296–304

guaranteeing existence of an operator, 316

interface constraints, 296–297

multiple constraints, 303–304

reference type constraints, 303

value type constraints, 301–303

constructed types, 289

constructors

attribute constructors, 271

calling base class constructor, 226

copy constructors, 55, 121

default constructors, 118

exceptions in, 265–266

inheritance, 226–228

initializing array elements with, 95

initonly fields, 124

managed types, 118

order of initialization, 227

reference and value types compared, 118

static constructors, 119–120

String class, 76

virtual functions in, 228–230

container classes see collection classes

container types, .NET Framework, 304

context switch, 327

thunk, 347

unnecessary context switches, 348

using native libraries without P/Invoke, 330

contextual keywords see keywords

conversion operators, 206–210

using explicit keyword with, 206–208

conversions

enumerated types, 112

explicit casts, 206

handling managed and unmanaged
resources, 167

marshaling and, 159

using native objects in managed types, 158

ConvertAll method, Array class, 104

converting strings

with other data types, 85–86

copy constructors

parameter to, 55

reference types, 63, 121

using tracking references with, 55

value types, 121

Hogenson_705-2INDEX.fm Page 383 Friday, October 27, 2006 3:19 PM

384 ■I N D E X

Copy method, Array class, 102, 104

copying arrays, 104

copying strings, 76

CopyTo method, Array class, 104

cout, using with String class, 91

CreateDomain method, AppDomain
class, 284

CreateInstance method

Activator class, 280

AppDomain class, 284

Array class, 104

cross-language interoperability, 319–322

CLS compliant language features, 321

consuming wrapped global function
in C#, 320

creating interface in C++, 320

description, 317

pure mode and safe mode, 319

using interface in Visual Basic, 320

wrapping global function, 319

CRT (C Runtime) library

compiling with, 90

compilation modes available for, 362

secure variants of, 91

using native libraries without P/Invoke, 329

CRT file pointer, 165

C-style casts, 208, 209, 366

CTS (common type system), 3–5

aggregate types, 12–14

primitive types, 4, 11–12

Current property, CardEnumerator class, 249

Current property, IEnumerator, 79

■D
data marshaling see marshaling

data storage

reference and value types compared, 118

data types see types

debugging

displaying Object as string, 45

declaration specifier for calling
conventions, 348

clr:pure mode, 31

compilation modes available for, 363

compiling native class into DLL, 325

double thunking, 348

deep copy, strings, 76

Scrabble game, 127

default indexed properties

arrays in classes, 108

backing property with collection, 180

defining/using, 178

delegate keyword, 356

delegates, 23–26, 184–190

assigning to static method, 25

asynchronous delegates, 188–190

creating delegate type, 23

customizing add/remove/raise event
methods, 194

declaring, 25

declaring events and event handlers, 191

events and, 23, 26

hooking up and firing events, 26

invocation list of functions, 184

MulticastDelegate class, 184

overloaded functions, 184

referencing nonstatic member function, 25

return values, 185

syntax, 368

unrelated to System::EventHandler, 196

using delegate with property accessor, 176

walking through invocation list, 186, 187

delete command

class destruction and cleanup, 161

controlling when object goes out of
scope, 49

not calling delete on managed objects, 52

Hogenson_705-2INDEX.fm Page 384 Friday, October 27, 2006 3:19 PM

385■I N D E X

Find it faster at http://superindex.apress.com

dereferencing handles, 54, 56

derived classes

finalizers, 232

order of initialization, 227, 228

using virtual functions in constructor,
229, 230

derived functions, 228

design patterns

asynchronous delegates, 188

pattern for using destructor and
finalizer, 163

destructors

auto_gcroot template, 160

calling, 231

calls between destructors and finalizers, 168

class destruction and cleanup, 160–161

handling managed and unmanaged
resources, 167

inheritance, 231

reference and value types compared, 118

static destructors, 120

using destructor and finalizer, 162, 163

using native objects in managed types, 159

using this pointer, 153

virtual destructors, 231

developer platforms

.NET Developer Platform, 29–41

dictionaries, 308–309

Dictionary class, 308

multiple constraints, 304

directives, using, 37–38

Dispose method

class destruction and cleanup, 161

controlling when object goes out of
scope, 50

traversing linked list with for each, 295

DivideByZeroException, 260

DLL, 6

compiling native class into, 324

generating, 39

invoking native functions in safe mode, 322

DllImport attribute

calling Win32 function in C++/CLI, 322

CallingConvention property, 324, 326

CharSet parameter, 323

EntryPoint property, 323, 324

doc compiler option, 359

documentation, XML, 359–362

domains, application, 283–284

double thunking, 348

Double type, 11

DrawTile method, Scrabble game, 134

dynamic type, 280

dynamic_cast, 208, 209

C++/CLI alternative to C++, 18

casting in inheritance hierarchies, 233

syntax, 365

dynamically loaded types

interfaces and, 255–257

■E
elements

ConvertAll method, Array class, 104

deletion and insertion in arrays, 108

FindLast method, Array class, 104

GetValue method, Array class, 105

IndexOf method, Array class, 105

SetValue method, Array class, 105

encoding, specifying for output file, 87

EndInvoke method, Delegate class, 188

entry points

main method, 8, 9, 364

managed entry point, 347–348

native entry point, 347–348

unnecessary context switches, 348

EntryPoint property, DllImport attribute,
323, 324

enum class, 17–18, 111

Flags attribute, 113–114

formatting with, 115

Format method, 115

safe_cast, 18

Hogenson_705-2INDEX.fm Page 385 Friday, October 27, 2006 3:19 PM

386 ■I N D E X

Scrabble game, 128

underlying type, 112

enum class keyword, 357, 365

enum struct keyword, 357

enumerated types, 110–116

conversions, 112

enumeration values, 114–116

enumerators

changing collection, 249

GetEnumerator method, 104

IEnumerable interface, 248–255

IEnumerator interface, 248–255

equality, arrays, 106–107

Equals method, Array class, 104, 106

Equals method, String class, 76

error handling, files, 88

Error property, Console class, 87

errors

exceptions and errors from native code,
269

GC hole, 340

interop with Win32 error codes, 351–352

swallowing, 269

event handlers, 26

see also events

accessor methods, 191, 193

customizing methods for, 191

event keyword, 191, 356

EventArgs class, 201

EventHandler class, 199

EventHandler type, 191, 192, 196

EventProcessor type, 196

EventReceiver class, 200

events, 191–203

see also event handlers

C++/CLI events introduced, 191

declaring events, 26

declaring events and event handlers, 192

delegates and, 23, 26

description, 127

event receivers and senders, 199–201

hooking up and firing, 26

interfaces with properties and, 240

introduction, 26

locking add and remove accessors, 193

locking raise method, 193

providing custom event data, 201

reserved names, 203

syntax, 369

type, 26

using EventArgs Class, 201

Events class, 191

EventSender class, 200

example tag, XML documentation, 359

except structured exceptions, 348–351

Exception class

creating custom exceptions, 262–263

InnerException property, 261

Message property, 260

Source property, 260

StackTrace property, 260

table of exceptions, 260

using properties of, 261

exception handling

C++/CLI and classic C++ compared, 259

coexistent C++ and CLR exception
handling, 353

guidelines, 268

handling which exceptions, 269

exception tag, XML documentation, 359

exceptions, 259–269

ArgumentException, 309

cascading, 261

CLS compliant alternative, 321

compilation modes available for, 363

creating custom exceptions, 262–263

exception specifications feature, 268

exceptions and errors from native
code, 269

Hogenson_705-2INDEX.fm Page 386 Friday, October 27, 2006 3:19 PM

387■I N D E X

Find it faster at http://superindex.apress.com

exceptions in constructors, 265–266

finally block, 263–264

interop with C++ exceptions, 352–354

interop with COM HRESULTs, 354

interop with structured exceptions,
348–351

InvalidCastException, 210

KeyNotFoundException, 309

pitfalls of finalizers, 170

properties, 260–262

rethrowing in catch block, 269

syntax, 371

table of, 260

throwing, 259

throwing in constructors, 265

throwing objects, not exceptions, 266–269

warning, 268

unhandled exceptions, 261

wrapping nonexception object, 267

ExecuteAssembly method, AppDomain
class, 284

Exists method, Array class, 104

Exit event, 191, 194, 195, 197

explicit delete, 49

explicit interface implementation, 371

explicit keyword, 206–208

compilation modes available for, 363

exponentiation operator, 203

expressions, how compilers understand, 56

extensions

enabling standard extensions for
C++/CLI, 3

■F
f() function signatures, 70

fields

const fields, 121

initonly fields, 124–125

literal fields, 121–124

properties and, 173

File class

opening StreamWriter, 87

finalizers, 161–170

calling, 232

calls between destructors and, 168

closing stream in, 168

handling managed and unmanaged
resources, 167

inheritance, 232–233

pattern for using destructor and, 163

pitfalls of, 168–170

syntax, 367

using destructor and, 162, 163

using native objects in managed types, 159

using this pointer, 153

finally blocks, 263–264

cleanup code, 269

finally keyword, 263, 356

Find method, Array class, 104

FindAll method, Array class, 104

FindIndex method, Array class, 104

FindLast method, Array class, 104

FindLastIndex method, Array class, 104

FindWinner method, Scrabble game, 137

Flags attribute, Enum class, 113–114

enum formatting with Flags attribute, 115

floating-point control, 362

for each keyword, 357

for each statement, 10, 364

generic collection classes, 290

IEnumerable interface, 248, 249

iterating over dictionary collection, 309

iterating with, 307

traversing linked list with for each, 291

using for each to traverse arrays, 98

ForEach method, Array class, 104

format characters, 114, 115

Hogenson_705-2INDEX.fm Page 387 Friday, October 27, 2006 3:19 PM

388 ■I N D E X

Format method

Enum class, 115

String class, 81, 82

Scrabble game, 129

formatting strings, 81–82

numeric string formatting, 82–84

FreeHGlobal method, Marshal class, 347

friend assemblies, 39

friend functions and classes, 203

global friend functions, 205

friend operators, 205

FU (Force Using) compiler option, 38

fully qualified names, 6

FUNCSIG macro, 325

function pointers, 184

functions

see also methods

adding to/removing from invocation
list, 184

asynchronous delegates, 188

calling with tracking reference, 54

changing value type in, 65

checking function completion, 189

declaring any function abstract, 219

declaring generic functions, 286

delegates and, 184

derived functions, 228

explicitly specifying function to
override, 217

friend functions, 203, 205

function signatures, 70

function taking handle type, 52

generic functions, 286–288

global functions, 319

implementing inherited functions
separately, 243

instance functions, 220

managed functions, 362

native functions, 327, 362

overloaded functions, 184

parameterized functions, 285

passing value/reference types to, 62

polymorphic functions, 235

sealed modifier, 221

special member functions and
inheritance, 225–233

thunk, 347

virtual functions in constructor, 228–230

functions, list of

see also methods, list of

MessageBox, 322, 323, 329, 330, 331

pow, 203

printf, 90, 91

printf_s, 91

swap_value, 65

Win32, 323

■G
gameBoard array, Scrabble game, 131

garbage collection, 1–2

auto_gcroot template, 159

class destruction and cleanup, 161

creating managed objects with gcnew, 2

finalizers, 161–170

GC hole error, 340

gcroot template, 159

managed heap, 2

pitfalls of finalizers, 168

roots, 159

GC class

Collect method, 163

GC hole error, 340

gc-lvalues, 56–58

gcnew constraint, 300–301

gcnew keyword, 355

creating managed objects with, 2

initializing arrays with, 93

initializing arrays without, 94

syntax, 364

using in generic type, 300

using managed array type, 15

Hogenson_705-2INDEX.fm Page 388 Friday, October 27, 2006 3:19 PM

389■I N D E X

Find it faster at http://superindex.apress.com

gcroot template

auto_gcroot compared, 342

containing handle in native type, 342

syntax, 374

using managed types in native classes, 159

gc-rvalues, 56–58

generic classes

ArrayList class, 305–308

assuming existence of an operator, 315

Dictionary class, 308

generic/nongeneric container classes, 304

KeyValuePair class, 309

syntax, 372

using reference or value types, 70

generic collection classes, 290–295

generic functions, 286–288, 373

generic interfaces, 313, 314

generic keyword, 285, 355

generic types, 27–28, 288–290

see also generics

class constraints, 297–298

compiler restrictions on, 289

constructed types, 289

defining generic List class, 27

gcnew constraint, 300–301

interface constraints, 296–297

iterating through generic collection, 28

multiple constraints, 303–304

parameters, 285–286

reference class using generic List as
property, 27

reference type constraints, 303

reference/value types as type parameters,
298–300

treating unknown type as handle, 299

type safety, 289

using constraints, 296–304

value type constraints, 301–303

generics, 285–308

see also generic types

declaring generic function, 286

declaring multiple generic
parameters, 286

managed templates compared, 309, 314

reasons for generics in C++/CLI, 285

templates compared, 285

using a generic list, 110

using collection class interfaces, 305

using generic list for strings, 298

get method see accessor (get and set)
methods of properties

GetAttributes method, Type class, 280

GetCustomAttribute method, Attribute
class, 279

GetEnumerator method

Array class, 104

IEnumerable interface, 248

traversing linked list with for each, 295

GetHashCode method, Array class, 104

GetInvocationList method, Delegate
class, 187

GetLastError method, Marshal class, 351

GetLastWin32Error method, Marshal
class, 351

GetLength method, Array class, 104

GetLongLength method, Array class, 104

GetLowerBound method, Array class, 105

GetMembers method, Type class, 280

GetMethods method, Type class, 280

GetPlayStartPosition method, Scrabble
game, 141

GetPlayType method, Scrabble game, 140

GetTilesForPlay method, Scrabble game, 141

GetType method, Array class, 105

GetType method, Type class, 280

GetTypes method, Assembly class, 279

GetUpperBound method, Array class, 105

Hogenson_705-2INDEX.fm Page 389 Friday, October 27, 2006 3:19 PM

390 ■I N D E X

GetValue method, Array class, 105

GetWorkingTiles method, Scrabble game, 145

global functions, 319

CLS compliant alternative, 321

consuming wrapped global function
in C#, 320

wrapping, 319

GlobalFree method, 347

■H
handles

abstract classes, 220

accessing reference types, 4

array address, 93

array of handles in Scrabble game, 127

auto_handle template, 58–60

C++/CLI exceptions, 259

C++/CLI stack semantics, 68

caret (^) character, 7

const_cast, 209

containing handle in native type, 342

creating handle to object using %, 66

dereferencing handles, 54

function taking handle type, 52

gc-lvalues and gc-rvalues, 56

gcroot and auto_gcroot compared, 343

generic types, 27

holding values of native OS handles, 323

introduction, 1, 2

main method arguments, 9

method requiring handle, 52

object semantics for reference types, 43

passing handle by reference using ^%
indirection, 54

passing object by reference in C++/CLI, 62

passing value types as handles, 68–70

pitfalls treating object on heap as if on
stack, 52

pointers compared, 2

reference types, 5

return values, 73

syntax, 363

temporary handles, 66–68

tracking references and, 53

treating object on heap as if on stack, 51

treating unknown generic type as, 299

using command line arguments, 10

using handle to value type, 68

using managed array type, 15

using managed object in native class, 342

using two handle symbols, 10

“has-a” relationship, 21

hash code

GetHashCode method, Array class, 104

heap

creating native objects with new or
malloc, 2

declaring variables on stack or on heap,
47–52

heap compaction, 2

heap object lifecycle, 48

managed heap, 2

native heap, 2

treating object on heap as if on stack, 50

“Hello World” program, 5–10

helper classes, Scrabble game, 127

HRESULT error codes

exceptions and errors from native code, 269

interop with COM HRESULTs, 354

HWnd class

wrapper classes for unmanaged
resources, 163

■I
IAddition interface, 316

IAsyncResult interface, 189

IComparable interface, 246–248

CompareTo method, 246

comparing strings, 80, 81

sorting array, 105

using generic IComparable, 246

Hogenson_705-2INDEX.fm Page 390 Friday, October 27, 2006 3:19 PM

391■I N D E X

Find it faster at http://superindex.apress.com

IConvertible interface, 85

identifiers, keywords as, 357

IDisposable interface

class destruction and cleanup, 161

Dispose method, 295

IEnumerable interface, 248–255

changing collection, 249

enumerating playing cards, 249

for each statement, 248, 249

generic collection classes, 290

generic form, 255

GetEnumerator method, 248

String class implementing, 79

traversing linked list with for each, 295

IEnumerator interface, 248–255

Current property, 79

enumerating playing cards, 249

generic collection classes, 290

IJW (it just works), 317

IKey interface, 304

IL (Intermediate Language)

CIL, 3

architecture dependence and 64-bit
programming, 32

compilation modes available for, 362

introduction, 319

ILDasm (Intermediate Language
Disassembler), 34–37

IList generic wrapper class

AsReadOnly method, Array class, 104

IList interface

Array class, 103

iterating with for each and with index, 308

trapping invalid cast exception, 307

implements keyword, 235

import directive

COM interop, 328

COM libraries, 37

compilation modes available for, 362

pure mode, 31

in keyword, 356

In property, Console class, 87

include directive, 6

include tag, XML documentation, 359

indexed properties, 22, 177–184

backing property with collection, 180

Chars indexed property, 76

default indexed property, 108, 178

using multiple indexes, 182

indexes

code substitutions, 81

FindIndex method, 104

FindLastIndex method, 104

GetLowerBound method, 105

GetUpperBound method, 105

iterating with, 307

LastIndexOf method, 105

IndexOf method, Array class, 105

IndexOutOfRangeException, 260

going past the end of arrays, 99

indirection

passing handle by reference using ^%, 54

indirection operator, 108

inheritance, 211–234

abstract classes, 219–220

interfaces compared, 220

attributes, 271

C++/CLI and classic C++, 211, 212

constructors, 226–228

order of initialization, 227

virtual functions in, 228–230

CTS (common type system), 4

destructors, 231

finalizers, 232–233

implementing inherited functions
separately, 243

interface classes, 19

interface inheritance, 238

multiple inheritance, 211

Hogenson_705-2INDEX.fm Page 391 Friday, October 27, 2006 3:19 PM

392 ■I N D E X

primitive types, 45

private and protected inheritance, 212

reference and value types compared, 118

reference types, 4

sealed classes, 220–222

special member functions and, 225–233

value classes, 117

value types, 4, 212

virtual properties, 222–225

inheritance hierarchies

casting in, 233–234

cross-language interop, 317

name collisions in, 212–219

new keyword, 214–215

override keyword, 215–219

Inherited property, 279

initialization

constructor order of, 227

initializing attribute with properties, 278

initializing static initonly field, 125

managed types, 118

static constructors, 119

static initialization, 119

TypeInitializationException, 260

Initialize method, Array class, 105

initializing arrays, 93–95

initializing part of arrays, 96

initonly fields, 124–125

initializing static initonly field, 125

new types of constant values, 118

Scrabble game, 131

syntax, 367

initonly keyword, 356

inline assemblies, pure mode, 31

InnerException property, Exception
class, 261

InnerObject property, 309

input/output, 86–92

basic I/O functions, 86

Console class, 86–87

reading and writing files, 87–89

reading and writing strings, 89–90

StreamReader class, 87–89

StreamWriter class, 87–89

String class, 90–92

StringReader class, 89–90

StringWriter class, 89–90

instance functions, 220

Int16/Int32/Int64 types, 11

integers

boxing an integer type, 45

unboxing Object to integer, 46

interface class keyword, 357, 365

interface class type, 12

interface classes, 19–20

interface handles, 235

dynamically loaded types, 255

interface name collisions, 242

interface implementation, 371

interface inheritance model, 241

interface keyword, 236

interface struct keyword, 357

interfaces, 235–257

abstract classes compared, 220, 235–236

access control, 236

assembly using template type in public
interface, 311

CLS compliant alternative, 321

creating interface in C++, 320

declaring, 236–237

declaring and implementing, 236

declaring generic interface, 313

declaring generic interface for
template, 313

defining and implementing, 19

dynamically loaded types and, 255–257

explicitly specifying implicit base
classes, 237

Hogenson_705-2INDEX.fm Page 392 Friday, October 27, 2006 3:19 PM

393■I N D E X

Find it faster at http://superindex.apress.com

implementing inherited functions
separately, 243

implementing multiple interfaces, 236

implements keyword, 235

interface constraints, 296–297

interface inheritance, 238

interfaces and access control, 244

interfaces implementing other interfaces,
237–239

interfaces with properties and events, 240

interfaces with static fields and
methods, 245

literals in interfaces, 246

members, 236

methods implementing interface
methods, 236

multiple inheritance, 235

of interfaces, 211

name collisions, 240–243

disambiguating, 241, 242

implementing inherited functions
separately, 243

object types, 235

reference and value types compared, 118

using collection class interfaces, 305

using generic interface instead of
template, 314

using in Visual Basic, 320

using new to implement interface
method, 238

using private method to implement, 244

interior pointers, 155, 339–340, 373

assigning value to, 339

compilation modes available for, 363

converting to pinned pointer, 156

navigating arrays using, 99

using interior pointers to traverse
arrays, 99

Intermediate Language see IL

internal access control specifier, 156

internal keyword, 356

internal modifier, 156, 157

interoperability (interop), 317–354

C++/CLI, 317

choice of compilation mode, 322

COM interop, 318, 328–329

cross-language interop, 317, 319–322

interior pointers, 339–340

interop with C++ exceptions, 352–354

interop with COM HRESULTs, 354

interop with other .NET languages,
319–322

interop with structured exceptions,
348–351

interop with Win32 error codes, 351–352

IntPtr struct, 323

invoking native functions in safe
mode, 322

managed entry point, 347–348

managed templates and generics
compared, 316

Marshal class, 328

native C++ code, 317

native entry point, 347–348

Out attribute, 272

pinning pointers (pin_ptr), 340–341

P/Invoke, 317

pure/safe modes, 272

recompiling native library as managed
code, 332–339

types of interop, 317–319

using C++ source code, 318

using managed object in native class,
342–343

using native libraries with P/Invoke,
322–328

using native libraries without P/Invoke,
329–332

using native object in managed type,
343–347

Hogenson_705-2INDEX.fm Page 393 Friday, October 27, 2006 3:19 PM

394 ■I N D E X

IntPtr struct

calling Win32 function in C++/CLI, 323

ToPointer method, 347

intrinsics, pure mode, 31

InvalidCastException, 208, 210, 260

casting in inheritance hierarchies, 233

generic/nongeneric container classes, 304

trapping invalid cast exception, 306

InvalidOperationException, 249

invariant, 7

invocation list, 184, 186

Invoke method, delegates, 184

InvokeMember method, Type class, 280

IOException type, 88

iostreams library, 211

“is-a” relationship, 235

isotope number, 12

isotopes, 181

iterators, traversing arrays, 97

■J
Java

interface inheritance model, 241

JIT (just-in-time) compiler, 3

■K
KeyNotFoundException, 309

KeyValuePair class, 309

keywords, 355, 356, 357

whitespaced keywords, 7, 357

keywords, list of

abstract, 219, 356

based, 363

class, 285

delegate, 356

enum class, 357

enum struct, 357

event, 356

explicit, 206

finally, 263, 356

for each, 357

gcnew, 355

generic, 285, 355

implements, 235

in, 356

initonly, 356

interface, 236

interface class, 357

interface struct, 357

internal, 356

literal, 356

new, 214–215

nullptr, 355

override, 215–219, 356

private, 156

property, 356

public, 156

ref, 7

ref class, 309, 357

ref struct, 357

sealed, 356

static, 122

struct, 357

template, 309

typename, 285

value class, 357

value struct, 357

virtual, 222

where, 356

■L
LastIndexOf method, Array class, 105

late binding

reflection dealing with unidentified
types, 282

LD compiler option

generating DLL, 39

reference classes, 14

Hogenson_705-2INDEX.fm Page 394 Friday, October 27, 2006 3:19 PM

395■I N D E X

Find it faster at http://superindex.apress.com

length, arrays

GetLength method, 104

GetLongLength method, 104

LongLength property, 103

Length property, Array class, 95, 103

libraries

abstract classes and interfaces compared,
220, 236

clr:pure mode, 31

mixing native and managed libraries, 92

recompiling native library as managed
code, 332–339

using native libraries with P/Invoke,
322–328

using native libraries without P/Invoke,
329–332

link.exe see linkers

linked lists

traversing with for each, 291

linkers

assembly linker, 40

CLR programming, 40

command-line options, 40

link.exe, 40

traditional linker, 40

using native libraries without P/Invoke, 330

List class

defining generic List class, 27

iterating with for each and with index, 307

list tag, XML documentation, 359

ListEnumerator class

traversing linked list with for each, 295

lists

Scrabble game, 127

using generic list for strings, 298

literal fields, 121–124

accessing, 122

compile-time constants, 123

compiling static constants and, 123

declaring, 121

defining static constants and, 123

initializing literals, 121

new types of constant values, 118

Scrabble game, 130, 132

static keyword, 122

syntax, 367

literal keyword, 356

literal values

literals in interfaces, 246

string literals, 76

treating as objects, 46

LN compiler option, 33

Load method, AppDomain class, 284

LoadFrom method, Assembly class, 279

lock class, 374

lock object

customizing event methods, 194

description, 196

using delegate unrelated to
EventHandler, 197

lock template, msclr\lock.h, 193

LongLength property, Array class, 103

looping through strings, 78

LPCWSTR parameter, 331

lvalues

chaining expressions involving
properties, 174

gc-lvalues and, 56

how compilers understand
expressions, 56

■M
main method, 8, 9, 364

malloc statement, 2

managed

use of term in this book, 2

managed array type, 92–110

accessing elements, 93

array equality, 106–107

ArrayList class, 108–110

Hogenson_705-2INDEX.fm Page 395 Friday, October 27, 2006 3:19 PM

396 ■I N D E X

arrays as parameters, 101–102

arrays in classes, 108

copying arrays, 102–103

declaring, 92

initializing, 93–95

introduction, 9

managed array class members, 103–106

native arrays compared, 100–101

navigating arrays, 97–100

parameter arrays, 107–108

syntax, 364

using, 14

using as function parameter, 102

managed base classes, 228, 229

managed C++

use of term in this book, 2

managed classes

const fields, 121

copy constructors, 55

literal fields, 121–124

multiple inheritance, 211

order of initialization, 227

using Win32 functions in managed
class, 331

managed code

calling convention for managed
functions, 347

context switch, 327

marshaling types between native code
and, 327

recompiling native library as, 332–339

using #pragma managed/unmanaged, 338

using reference types with stack
semantics, 47,–2

managed derived classes, 228, 230

managed entry point, 347–348

native function, 327

managed extensions syntax, Visual
C++ 2005, 32

managed functions/headers

compilation modes available for, 362

managed heap, 2

gc-lvalues and gc-rvalues, 56

native and managed arrays compared,
100, 101

managed objects

not calling delete on, 52

pitfalls of finalizers, 168, 170

using in native class, 342–343

managed resources, handling, 164

managed string type

calling Win32 function in C++/CLI, 323

managed templates, 309–316

assembly using in public interface, 311

assuming existence of operator, 315

constraint guaranteeing existence of
operator, 316

declaring generic interface for, 313

generics compared, 309, 314

passing class types over assembly
boundary, 311

reasons for using, 314

ref class template, 310

syntax, 372

using generic interface instead of, 314

using template from another
assembly, 314

using template in another assembly, 312

using template with different types, 310

managed types, 12

address-of operator for, 52

compilation modes available for, 362

constructors, 118

conversion operators, 206–210

implications of unified type system, 44–45

initialization, 118

introduction, 1

managed templates, 311

Hogenson_705-2INDEX.fm Page 396 Friday, October 27, 2006 3:19 PM

397■I N D E X

Find it faster at http://superindex.apress.com

reference types, 4

reference types or value types, 4

use of term in this book, 4

using managed array type, 15

using in native classes, 159–160

using native object in, 157–159, 343–347

value types, 4

manifest, assembly, 33–37

Marshal class, 328

FreeHGlobal method, 347

GetLastError method, 351

GetLastWin32Error method, 351

StringToHGlobalUni method, 347

using native objects in managed types, 158

MarshalAs attribute, 328

marshaling

character, string, and structure types, 327

context switch, 327

data marshaling, 327–328

description, 159, 318

marshaling types between native and
managed code, 327

primitive types, 327

using cout with String class, 91

members

special member functions and
inheritance, 225–233

value type with, 8

value types defining special member
functions, 15

memory

creating native objects with new or
malloc, 2

managed/native heaps, 2

memory layout of Scrabble game
features, 128

OutOfMemoryException, 260

Message property, Exception class, 260

creating custom exceptions, 262

error handling for files, 88

unhandled exceptions, 261

MessageBox function, 322, 323, 329, 330, 331

MessageBoxClass

creating native MessageBoxClass, 332

using wrapper from C# assembly, 337

wrapping, 334, 335

messages

Obsolete attribute, 272

metadata

accessing programmatically, 279

assemblies, 33

description, 270

viewing with ILDasm.exe, 34–37

methods

see also functions

abstract classes and interfaces compared,
220, 236

abstract methods, 370

accessor (get/set) methods of events, 191,
193, 203

accessor (add/remove) methods of
properties, 173–177

const correctness, 126

interface inheritance, 238

interface name collisions, 240

interfaces with static fields and, 245

methods implementing interface
methods, 236

methods requiring handles, 52

private methods, 244

sealed methods, 370

sealed modifier, 220

static methods, 245, 280

using new to implement interface
method, 238

virtual methods, 215–219, 236, 322

methods, list of

see also functions, list of

add, event handlers, 191, 193

AsReadOnly, Array class, 104

BeginInvoke, Delegate class, 188, 189

BinarySearch, Array class, 104, 105

Hogenson_705-2INDEX.fm Page 397 Friday, October 27, 2006 3:19 PM

398 ■I N D E X

Clear, Array class, 104

Clone, Array class, 104

Collect, GC class, 163, 170

Combine, Delegate class, 186

Compare, String class, 80, 81

CompareOrdinal, String class, 81

CompareTo, String class, 80, 81

CompareTo, IComparable interface, 246

Concat, String class, 76

ConstrainedCopy, Array class, 104

ConvertAll, Array class, 104

Copy, Array class, 102, 104

CopyTo, Array class, 104

CreateDomain, AppDomain class, 284

CreateInstance, Activator class, 280

CreateInstance, AppDomain class, 284

CreateInstance, Array class, 104

Dispose, 50

EndInvoke, Delegate class, 188

Equals, Array class, 104, 106

Equals, String class, 76

ExecuteAssembly, AppDomain class, 284

Exists, Array class, 104

Find, Array class, 104

FindAll, Array class, 104

FindIndex, Array class, 104

FindLast, Array class, 104

FindLastIndex, Array class, 104

ForEach, Array class, 104

Format, Enum class, 115

Format, String class, 81, 82

FreeHGlobal, Marshal class, 347

get, properties, 22, 173–177, 203

GetAttributes, Type class, 280

GetCustomAttribute, Attribute class, 279

GetEnumerator, Array class, 104

GetEnumerator, IEnumerable interface, 248

GetHashCode, Array class, 104

GetInvocationList, Delegate class, 187

GetLastError, Marshal class, 351

GetLastWin32Error, Marshal class, 351

GetLength, Array class, 104

GetLongLength, Array class, 104

GetLowerBound, Array class, 105

GetMembers, Type class, 280

Gets, Type class, 280

GetType, Array class, 105

GetType, Type class, 280

GetTypes, Assembly class, 279

GetUpperBound, Array class, 105

GetValue, Array class, 105

GlobalFree, 347

IndexOf, Array class, 105

Initialize, Array class, 105

Invoke, 184

InvokeMember, Type class, 280

LastIndexOf, Array class, 105

Load, AppDomain class, 284

LoadFrom, Assembly class, 279

main, 8, 9, 364

raise, events, 191

RaiseExitEvent/RaiseStartEvent s, 191,
195, 198

Read, StreamReader class, 87

ReadLine, StreamReader class, 87

ReadLine, Console class, 87

Remove, 186

remove, event handlers, 191, 193

Resize, Array class, 105

Reverse, Array class, 105

set, properties, 22, 173–177, 203

SetValue, Array class, 105

Sort, Array class, 105

StringToHGlobalUni, Marshal class, 347

ToCharArray, String class, 77, 78

ToPointer, IntPtr struct, 347

ToString, Array class, 105

ToString, String class, 80

Hogenson_705-2INDEX.fm Page 398 Friday, October 27, 2006 3:19 PM

399■I N D E X

Find it faster at http://superindex.apress.com

ToXyz methods, 85

TrueForAll, Array class, 105

UseData, 170

Write, Console class, 86

Write, StreamWriter class, 87

WriteLine, Console class, 81, 86

WriteLine, StreamWriter class, 87

MFC (Microsoft Foundation Classes)

clr:pure mode, 31

compilation modes available for, 362

memory map, 191

mixed mode, 31

see also pure mode; safe mode

architecture dependence and 64-bit
programming, 32

detecting CLR compilation, 358

features available for, 362

IJW (it just works), 317

interoperability, 317

using C++ source code, 318

reference classes, 14

using native libraries without P/Invoke,
329, 330

Visual C++ 2005, 3, 31

mixed types not supported, 14

modifiers

abstract modifier, 220

accessibility modifiers, 37, 156, 157

as_friend modifier, 39

internal modifier, 156, 157

override modifier, 222

private modifier, 157

protected modifier, 157

public modifier, 157

sealed modifier, 220

module attributes, 276–277

modules, 33

msclr namespace, 159

lock template, 193

mscorlib.dll, 37, 38

MSIL see IL

multicast delegates, 184

customizing add/remove/raise event
methods, 194

MulticastDelegate class, 184

multifile assemblies, 41

multiple inheritance, 211

interfaces, 235

■N
name collisions

inheritance hierarchies, 212–219

interfaces, 240–243

native

use of term in this book, 2

native arrays, 100–101

native base classes, 227, 229

native classes

compiling into DLL, 324

destructors and inheritance, 231

order of initialization, 227

using managed object in, 342–343

using managed types in, 159–160

native code

CLS compliant alternative, 321

exceptions and errors from, 269

interoperability, 317

invoking in safe mode, 322

marshaling types between managed code
and, 327

P/Invoke knowing calling convention of
target function, 324

pure mode, 31

using #pragma managed/unmanaged, 338

wrapping native type thrown from, 352

native derived classes, 227, 229

native entry points, 347–348

native exports, pure mode, 31

native functions, 327, 362

native headers, 362

Hogenson_705-2INDEX.fm Page 399 Friday, October 27, 2006 3:19 PM

400 ■I N D E X

native heap

creating native objects with new, 2

native libraries

creating native MessageBoxClass, 332

recompiling as managed code, 332–339

using without P/Invoke, 329–332

native mode, 32, 322

features available for, 362

native objects/types, 1

compilation modes available for, 362

containing handle in native type, 342

creating with new or malloc, 2

mixed types not supported, 14

using in managed types, 157–159, 343–347

native pointers, encapsulating, 344

native resources see unmanaged resources

navigating arrays, 97–100

interior pointers, 99

using for each to traverse arrays, 98

using interior pointers to traverse
arrays, 99

using iterators to traverse arrays, 97

NDP (.NET Developer Platform), 29–41

targeting with Visual C++ 2005, 29

.NET Framework, 5

compilation modes available for, 362

container types, 304

.NET languages

interoperating with other, 319–322

.NET module, 33

new keyword, 214–215

sealed classes, 221

using on virtual functions, 214–215

using to implement interface method, 238

using to override overriding, 214

new statement, 2

NOASSEMBLY linker option, 33

NonSerialized attribute, 273

NotFiniteNumberException, 260

nullptr keyword, 355, 364

nullptr value

casting in inheritance hierarchies, 233

dynamic_cast, 209

object semantics for reference types, 43

NullReferenceException, 260

object semantics for reference types, 43

numeric string formatting, 82–84

■O
obfuscated names, 325, 327

Object type

debugging tool, 45

displaying Object as string, 45

implications of unified type system, 44

public methods, 44

unboxing Object to integer, 46

unified type system, 3

value type converted to, 46

object types

interfaces, 235

return values, 70

objects

abstract classes and interfaces
compared, 235

collections owning and deleting, 302

native and managed arrays compared, 101

orphaned objects, 43

querying object attributes at runtime, 279

throwing objects, not exceptions, 266–269

warning, 268

treating object on heap as if on stack, 50

wrapping nonexception object, 267

Obsolete attribute, 271–272

oldSyntax option see managed
extensions syntax

OnExit event handler, 195, 198

OnStart event handler, 195, 198

operator overloading, 203–210

CLS compliant alternative, 322

Hogenson_705-2INDEX.fm Page 400 Friday, October 27, 2006 3:19 PM

401■I N D E X

Find it faster at http://superindex.apress.com

operators

% operator, 52–53

& (address-of) operator, 52, 60

* operator, 54

+ operator, 79, 80, 205

+= operator, 22, 184, 194

-= operator, 22, 184, 185

addition operator, 79, 80

address-of operator (&), 52

assignment operator (=), 43

conversion operators, 206–210

description, 127

exponentiation operator, 203

friend operators, 205

indirection operator, 108

precedence and evaluation, 203

scope operator (::), 38

static operators, 203–206

string operators, 79,–0

tracking reference operator (%), 66

ordinal numbers

CompareOrdinal method, 81

orphaned objects, 43

Out attribute, 272–273

Out property, Console class, 87

OutOfMemoryException, 260, 265, 268

output file, specifying encoding of, 87

OverflowException, 260

overloaded functions, 184

overloading, operators, 203–210

override keyword, 215–219

description, 356

explicitly specifying function to
override, 217

sealed classes, 221

using on virtual methods, 215–219

using to implement virtual function, 216

override modifier, 222

overriding

overriding basic property, 222

using new keyword to override
overriding, 214

■P
para tag, XML documentation, 360

param tag, XML documentation, 360

parameter arrays, 107–108

parameterization, 309

parameterized function, 285

parameterized types, 12, 27

templates and generics compared, 285

using in assembly public classes and
methods, 312

parameters

arrays as, 101–102

attribute parameters, 271

passing by reference in C++, 62

passing by value and by reference
in C++, 60

passing object by reference in C++/CLI, 62

passing, 60–70

table of function signatures, 70

temporary handles, 66–68

passing pointer by reference in C++, 62

passing reference types by value, 63–64

passing value types as handles, 68–70

passing value types by reference, 65–66

specifying out-only parameter, 272

using generic array as, 287

paramref tag, XML documentation, 360

Pass method, Scrabble game, 138

passing parameters, 60–70

passing by reference in C++, 62

passing by value and by reference
in C++, 60

passing handle by reference using ^%
indirection, 54

passing object by reference in C++/CLI, 62

Hogenson_705-2INDEX.fm Page 401 Friday, October 27, 2006 3:19 PM

402 ■I N D E X

passing pointer by reference in C++, 62

passing reference types by value, 63–64

passing value types as handles, 68–70

passing value types by reference, 65–66

table of function signatures, 70

temporary handles, 66–68

patterns see design patterns

performance

exception specifications feature, 268

generic collection classes, 290

implicit boxing and unboxing, 46

permission tag, XML documentation, 360

pinning pointers (pin_ptr), 155, 340–341

converting interior pointer to, 156

syntax, 373

using cout with String class, 91

using Win32 functions in managed class,
331

P/Invoke, 317

calling Win32 function in C++/CLI, 323

CallingConvention property, DllImport
attribute, 326

CharSet parameter, 323

compilation modes available for, 362

compiling native class into DLL, 324

data marshaling, 327–328

holding values of native OS
handles/pointers, 323

invoking native functions in safe
mode, 322

knowing calling convention of target
function, 324

using DllImport attribute EntryPoint
property, 324

using native libraries with, 322–328

using native libraries without, 329–332

placeholders

code substitutions, 81

type parameter identifier, 286

platform invoke see P/Invoke

platforms

.NET Developer Platform, 29–41

Play method, Scrabble game, 136

Player struct, Scrabble game, 130

PlayerMove method, Scrabble game, 146

players array, Scrabble game, 131

playing cards, enumerating, 249

PlayType class, Scrabble game, 129

point_values array, Scrabble game, 129

pointers

CLS compliant alternative, 321

const_cast, 209

dangerous C function, 61

dereferencing, 54

dynamic_cast, 208

encapsulating native pointer, 344

handles compared, 2

holding values of native OS pointers, 323

interior pointers, 339–340

using to traverse arrays, 99

IntPtr struct, 323

native and managed arrays compared, 101

navigating arrays, 97

navigating arrays using interior
pointers, 99

passing by reference in C++, 62

pinning pointers (pin_ptr), 91, 340–341

PtrToStringChars, 91

safe mode, 330

static_cast, 208

this pointer, 153–156

using double pointer in C, 62

using native objects in managed types, 159

polymorphic functions, 235

pow function, 203

pragma managed, 338

pragma pack, 363

pragma unmanaged, 338

compilation modes available for, 363

Hogenson_705-2INDEX.fm Page 402 Friday, October 27, 2006 3:19 PM

403■I N D E X

Find it faster at http://superindex.apress.com

precedence

operator overloading, 203

PreGame method, Scrabble game, 135

primitive types

implicit boxing and unboxing, 45–47

inheritance, 45

introduction, 11–12

marshaling, 327

synonyms for, 4

PrintBoard method, Scrabble game, 133

printf function

compiling with CRT or safe mode, 90

secure variants of CRT functions, 91

printf_s function

secure variants of CRT functions, 91

PrintPlayerTiles method, Scrabble game, 130

PrintScores method, Scrabble game, 133

private inheritance, 212

private keyword, 156

use of, 37

private method

using to implement interface, 244

private modifier, 157

processor architecture dependence, 32

program name, 10

properties, 173–177

accessor (get and set) methods, 173

attribute properties, 279

chaining expressions, 174

CLS compliant alternative, 321

compound assignment operators, 22

computing property values, 174

declaring, 173

default indexed properties

arrays in classes, 108

backing property with collection, 180

defining/using, 178

defining property accessors outside
class, 176

description, 127

different ways of defining properties, 22

Exception class, 260–262

indexed properties, 22, 177–184

initializing attribute with, 278

interfaces with properties and events, 240

introduction, 21–22

overriding basic property, 222

read-only properties, 22, 176

reference class using generic List as, 27

reserved names, 203

scalar properties, 22

static properties, 177

syntax, 368

trivial properties, 22

using delegate with property accessor, 176

virtual properties, 222–225

write-only properties, 183

properties, list of

AllowMultiple, 279

AttributeTargets, 279

CallingConvention, 324, 326

Current, 79, 249

EntryPoint, 323, 324

Error, 87

In, 87

Inherited, 279

InnerException, 261

InnerObject, 309

Length, 95, 103

LongLength, 103

Message, 260

Out, 87

Rank, 103

Source, 260

StackTrace, 260

SyncRoot, 103

property keyword, 356

protected access control specifiers, 156, 183

Hogenson_705-2INDEX.fm Page 403 Friday, October 27, 2006 3:19 PM

404 ■I N D E X

protected modifiers, 157

public class, 39

public keyword

absence of, 19

protected public access control
specifier, 156

referencing assemblies, 39

use of, 37

public modifier, 157

pure mode, 30–31

see also mixed mode; safe mode

architecture dependence and 64-bit
programming, 32

features available for, 362

interoperability, 272

cross-language interoperability, 319

using native objects in managed types, 159

using native libraries without P/Invoke,
329, 330

Visual C++ 2005, 30–31

■R
radioactive decay program, 13

RAII (Resource Acquisition is
Initialization), 160

raise method, events

customizing, 191, 193, 194, 195

declaring events and event handlers, 193

locking, 193

reserved names (raise_E) for events, 203

using delegate unrelated to EventHandler,
197, 198

RaiseExitEvent/RaiseStartEvent methods

customizing event methods, 195

declaring events and event handlers, 191

using delegate unrelated to
EventHandler, 198

Rank property, Array class, 103

rank, arrays, 93

native and managed arrays compared,
100, 101

Read method, StreamReader class, 87

ReadLine method, StreamReader class, 87

ReadLine method, Console class, 87

read-only properties, 22, 176

receivers, EventReceiver class, 200

RecordPlay method, Scrabble game, 144

ref class see reference classes

ref class keyword, 309, 357

ref class template, 310

ref class type, 12

ref keyword, 7

ref struct keyword, 12, 357

reference classes

constructor inheritance, 226

introduction, 7, 14–15

managed reference classes, 1

mixed types not supported, 14

ref class, 1, 14

reference type constraints, 303

Scrabble game, 127

syntax, 365

using generic List as property, 27

using managed array type, 14

reference semantics, 4

reference types

accessing, 4

as type parameters, 298–300

auto_handle template, 58

C++/CLI stack semantics, 66

collection owning and deleting
objects, 302

const_cast, 209

copy constructors, 63, 121

default constructor for, 118

dereferencing handles, 54

explicitly specifying implicit base
classes, 237

handles, 5

Hello class, 6, 8

inheritance, 4, 211

Hogenson_705-2INDEX.fm Page 404 Friday, October 27, 2006 3:19 PM

405■I N D E X

Find it faster at http://superindex.apress.com

interfaces, 211

introduction, 4

object semantics for, 43

passing as reference, 4

passing object by reference in C++/CLI, 62

passing reference types by value, 63–64

passing to functions, 62

passing value types by reference, 69

pitfalls of finalizers, 168

reference type constraints, 303

return values, 70

table of function signatures, 70

this pointer, 153

using reference types with stack
semantics, 47–52

value types compared, 117

referencing assemblies

using directive, 37

reflection, 279–283

compilation modes available for, 362

interfaces and dynamically loaded
types, 255

loading assembly and reflecting on
types, 280

mode required, 279

reflecting on Late Binding, 282

reflecting with Type methods, 280

reinterpret_cast, 209, 210

remarks tag, XML documentation, 360

Remove method, 186

remove method, event handlers

customizing, 193

customizing methods, 191, 194

declaring events and event handlers, 193

reserved names (remove_E) for
events, 203

using delegate unrelated to
EventHandler, 197

ReplacePlayedTiles method, Scrabble
game, 144

reserved names, events and properties, 203

Resize method, Array class, 105

resources, assemblies and, 41

return values

delegates, 185

do's and don'ts, 70–73

returns tag, XML documentation, 360

Reverse method, Array class, 105

root, 159

runtime flexibility

managed templates and generics
compared, 316

RuntimeWrappedException object

throwing objects, not exceptions, 267

rvalues

chaining expressions involving
properties, 174

gc-rvalues and, 56

how compilers understand
expressions, 56

■S
safe mode, 30

see also mixed mode; pure mode

architecture dependence and 64-bit
programming, 32

features available for, 362

interoperability, 272

cross-language interoperability, 319

invoking native functions in, 322

pointers, 330

printf function, 90

reflecting with Type methods, 282

static_cast, 208

structs, 330

using native objects in managed types, 159

using native libraries without P/Invoke,
329, 330

Visual C++ 2005, 30

Hogenson_705-2INDEX.fm Page 405 Friday, October 27, 2006 3:19 PM

406 ■I N D E X

safe_cast, 18, 209, 210, 365

casting in inheritance hierarchies, 233

Enum class object conversions, 112

SafeHandle class, 163

SByte type, 11

scalar properties, 22

scope

auto_handle template, 59

controlling when object goes out of, 49

heap objects, 48

value types, 4

scope operator (::), 38

Scrabble game, 127–153

AdjustPointTotals method, 137

bag list, 131

CalculateScore method, 148

Characters class, 128

ConfirmPlay method, 144

DrawTile method, 134

FindWinner method, 137

gameBoard array, 131

GetPlayStartPosition method, 141

GetPlayType method, 140

GetTilesForPlay method, 141

GetWorkingTiles method, 145

main method, 152

memory layout of features, 128

Pass method, 138

Play method, 136

Player struct, 130

PlayerMove method, 146

players array, 131

PlayType class, 129

point_values array, 129

PreGame method, 135

PrintBoard method, 133

PrintPlayerTiles method, 130

PrintScores method, 133

RecordPlay method, 144

ReplacePlayedTiles method, 144

ScrabbleGame class, 130

SpaceType class, 129

spaceTypeColors array, 131

Tile struct, 129

tilePopulation array, 131

UpdateScore method, 145

ScrabbleGame class, Scrabble game, 130

sealed classes, 220–222, 370

sealed keyword, 356

sealed methods, 370

sealed modifier, 220, 221

searching

BinarySearch method, 104

security

signed assemblies, 41

see tag, XML documentation, 360

seealso tag, XML documentation, 360

SEH (Structured Exception Handling),
348–351

compilation modes available for, 363

handling structured exceptions, 349

senders

EventSender class, 200

Serializable attribute, 273

serialization attributes, 273–275

set method see accessor (get and set)
methods of properties

set_terminate, 362

SetValue method, Array class, 105

shallow copy, strings, 76

Scrabble game, 127

signatures, functions, 70

signed assemblies, 41

SIGTERM, 362

Single type, 11

Sort method, Array class, 105

source code

interoperability using, 318

Source property, Exception class, 260

Hogenson_705-2INDEX.fm Page 406 Friday, October 27, 2006 3:19 PM

407■I N D E X

Find it faster at http://superindex.apress.com

SpaceType class, Scrabble game, 129

spaceTypeColors array, Scrabble game, 131

sparse array, 26

stack

C++/CLI stack semantics, 66

declaring variables on stack or on heap,
47–52

function taking handle type, 52

native and managed arrays compared,
100, 101

stack object lifecycle, 48

treating object on heap as if on stack, 50

using reference types with stack
semantics, 47–52

stack semantics declaration, 367

StackTrace property, Exception class, 260

rethrowing exceptions in catch block, 269

unhandled exceptions, 261

Standard C++ library

compilation modes available for, 362

using native libraries without P/Invoke, 329

Start event

customizing event methods, 195

declaring events and event handlers, 191

using delegate unrelated to EventHandler,
197

static constants

compiling, 123

defining, 123

literals in interfaces, 246

static constructors, 119–120, 367

initonly fields, 124

this pointer, 153

static destructors, 120

static fields, interfaces with, 245

static initialization, 119

initonly field, 125

static keyword, 122

static members

CLS compliant alternative, 321

static methods

interfaces with, 245

Type class, 280

static operators, 203–206, 369

defining class to represent complex
numbers, 203

defining, 205

global friend functions replaced, 205

static properties, defining, 177

static type, 280

static_cast, 208, 209, 365

C++/CLI alternative to C++, 18

stdcall calling convention

P/Invoke knowing calling convention of
target function, 324

stdin/stdout/stderr streams

Console class properties exposed for, 87

StreamReader class, 87–89

Read/ReadLine methods, 87

streams

closing in finalizer, 168

StreamWriter class, 87–89

Write/WriteLine methods, 87

String class, 90–92

assigning string literals, 76

Chars indexed property, 76

Compare method, 80

CompareOrdinal method, 81

CompareTo method, 80, 81

Concat method, 76

constructor, 76

description, 7, 75

Equals method, 76

Format method, 81, 82

IConvertible interface, 85

IEnumerable interface, 79

secure variants of CRT functions, 91

ToCharArray method, 77

ToString function, 80

using cout with, 91

Hogenson_705-2INDEX.fm Page 407 Friday, October 27, 2006 3:19 PM

408 ■I N D E X

string literals, 7, 76

String type, 75

string type

pitfalls treating object on heap as if on
stack, 51

StringBuilder class, 84–85

description, 75

StringReader class, 89–90

strings, 75–86

comparing, 76, 80–81

concatenating, 76, 79

conversions with other data types, 85–86

converting to character array, 78

converting to primitive type, 85

copying, 76

creating, 75

editing, 80

enumeration values as, 114–116

format strings, 81

formatting, 81–82

numeric string formatting, 82–84

looping through, 78

manipulation and editing, 84

string operators, 79–80

String type, 75

StringBuilder class, 84–85

ToString method, Array class, 105

using generic list for, 298

StringToHGlobalUni method, Marshal
class, 347

StringWriter class, 89–90

strong typing

generic collection classes, 290

struct keyword, 357

structs

IntPtr struct, 323

safe mode, 330

sealed modifier, 220

value struct, 9, 357

structured exceptions

handling, 349

interop with, 348–351

structures

classes compared, 9, 117

summary tag, XML documentation, 360

swallowing errors

handling exceptions only if you can, 269

swap_value function

changing value type in function, 65

SyncRoot property, Array class, 103

synonyms, primitive types, 4

syntax summary, 363–375

System namespace

Array class, 103

Console class, 86–87

defining primitive types, 4

String class, 90–92

■T
template class, 343

template keyword, 309

template types, 15

passing over assembly boundary, 311

templates

CLS compliant alternative, 321

declaring generic interface for, 313

description, 27

generics compared, 285

managed templates, 309–316

ref class template, 310

using generic interface instead of, 314

using template from another assembly, 314

using template with different types, 310

this pointer, 153–156

event accessor (add and remove)
methods, 193

reference types, 153

static constructors, 153

value types, 155, 156

Hogenson_705-2INDEX.fm Page 408 Friday, October 27, 2006 3:19 PM

409■I N D E X

Find it faster at http://superindex.apress.com

thiscall calling convention, 327, 347

thread synchronization

SyncRoot property, Array class, 103

threads

asynchronous delegates, 188

event accessor (add and remove)
methods, 193

static counter variable in initialization, 119

throwing exceptions, 259

handle specific exceptions first, 269

rethrowing in catch block, 269

throwing exceptions in constructors, 265

throwing objects, not exceptions, 266–269

warning, 268

thunk, 347

double thunking, 348

Tile constructor, Scrabble game, 129

Tile struct, Scrabble game, 129

tilePopulation array, Scrabble game, 131

tlbimp.exe tool, 318

COM interop, 328

ToCharArray method, String class, 77, 78

ToPointer method, IntPtr struct, 347

ToString method, Array class, 105

enumeration values as strings, 114

overrides for, 215

Scrabble game, 129

ToString method, String class, 80

ToXyz methods

converting from string to primitive
type, 85

tracking handles see handles

tracking reference operator (%), 66

tracking references, 52–54

% character, 55

dereferenced handles, 54

gc-lvalues and gc-rvalues, 56

handles and, 53

how compilers understand expressions, 56

Out attribute, 272

passing handle by reference using ^%
indirection, 54

return values, 70, 73

syntax, 364

using with copy constructors, 55

trivial properties, 22

TrueForAll method, Array class, 105

try ... catch block

error handling for files, 88

throwing objects, not exceptions, 268

using multiple finally blocks, 264

walking through invocation list, 187

try structured exceptions

interop with, 348–351

Type class, 279

GetAttributes method, 280

GetMembers method, 280

GetMethods method, 280

GetType method, 280

InvokeMember method, 280

reflecting with Type methods, 280

using static method, 280

type identification, 372

Type object

getting type information, 280

type parameters

class constraints, 297

declaring multiple generic parameters, 286

gcnew constraint, 300

generics, 285–286

identifier, 286

interface constraints, 296

managed templates and generics
compared, 315

multiple constraints, 303

reference type constraints, 303

reference types and value types as,
298–300

value type constraints, 301

Hogenson_705-2INDEX.fm Page 409 Friday, October 27, 2006 3:19 PM

410 ■I N D E X

type safety

clr:safe compiler option, 30

generic collection classes, 290

generic types, 289

reinterpret_cast, 209

type system

CTS (common type system), 3–5

implications of unified type system, 44–45

typeid, getting type object, 280

TypeInitializationException, 260

typename keyword, 285

types

.NET Framework object types, 75

aggregate types, 12–14

arrays, 92–110

compile-time parameterization of
types, 27

conversion operators, 206–210

conversions between strings and other,
85–86

dynamic type, 280

enumerated types, 110–116

explicitly specifying type argument, 288

generic types, 288–290

GetType method, Array class, 105

inheritance, 45

interfaces and dynamically loaded types,
255–257

managed array type, 9, 92–110

marshaling between native and managed
code, 327

mixed types not supported, 14

native and managed arrays compared, 101

parameterized function, 285

primitive types, 11–12

runtime parameterization of, 27

static type, 280

String type, 75

synonyms for primitive types, 4

using template with different types, 310

■U
UInt16/UInt32/UInt64 types, 12

unary % operator, 52–53

unboxing see boxing

unified type system, 3

implications of, 44–45

unmanaged resources

examples of, 163

finalizers, 161, 163

handling managed and, 164, 165

wrapper classes for, 163

unsafe casts, 362

UpdateScore method, Scrabble game, 145

UseData function

pitfalls of finalizers, 170

using directive, 6, 37–38

as_friend modifier, 39

COM interop, 328

compilation modes available for, 362

cross-language interop, 317

scope operator (::), 38

using statement, C#, 50

■V
value class keyword, 357

value classes, 12, 15–17, 365

inheritance, 117

Scrabble game, 127

sealed modifier, 221

value semantics, 4

value struct, 9, 357

value struct type, 12

value tag, XML documentation, 360

value types

abstract classes, 220

as type parameters, 298–300

boxing, 44

changing in function, 65

constraints, 301–303

Hogenson_705-2INDEX.fm Page 410 Friday, October 27, 2006 3:19 PM

411■I N D E X

Find it faster at http://superindex.apress.com

controlling when object goes out of
scope, 50

copy constructors, 121

default constructor for, 118

defining special member functions, 15

explicitly specifying implicit base
classes, 237

Hello class, 8

implicit boxing and unboxing, 45–47

inheritance, 4, 212

initializing members to default values, 15

introduction, 4

object semantics for, 44

passing as copy, 4

passing as handles, 68–70

passing by reference, 65–66, 69

passing object by value in C++/CLI, 62

passing to functions, 62

reference types compared, 117

scope, 4

table of function signatures, 70

this pointer, 155

using handle to, 68

using instead of array, 16

using this in, 156

value type converted to object, 46

value type with members, 8

varargs, CLS compliant alternative, 322

variables

controlling when variable goes out of
scope, 49

declaring on stack or on heap, 47–52

object semantics for reference types, 43

object semantics for value types, 44

tracking references, 53

vector property see indexed properties

versions

name collisions in inheritance hierarchies,
212, 213

VES (Virtual Execution System), 3

virtual accessors, 223

CLS compliant alternative, 321

virtual destructors, 231

virtual functions

C++/CLI and C++ compared, 230

compilation modes available for, 363

overriding, 215

syntax, 370

using new keyword on, 214–215

using override keyword to implement, 216

virtual functions in constructors, 228–230

virtual keyword

accessor (get and set) methods of
properties, 222, 223

declaring and implementing
interfaces, 236

virtual machine, 3

virtual methods

CLS compliant alternative, 322

methods implementing interface
methods, 236

using override keyword on, 215–219

virtual properties, 222–225

visibility

type visibility modifiers, 156

Visual Basic

using interface in, 320

Visual C++ 2005

caveats when upgrading code to, 32

classic compilation, 32

compilation modes, 30–32

managed extensions syntax, 32

mixed mode, 3, 31

pure mode, 30–31

safe mode, 30

targeting .NET Developer Platform
with, 29

Void type, 12

Hogenson_705-2INDEX.fm Page 411 Friday, October 27, 2006 3:19 PM

412 ■I N D E X

■W
where keyword, 356

whitespaced keywords, 7, 357

width field

formatting strings using, 82

Win32 API, using, 329

Win32 error codes, interop with, 351–352

Win32 function

calling in C++/CLI, 323

using in managed class, 331

Wp64 option

architecture dependence and 64-bit
programming, 33

wrappers

COM interop, 328

consuming wrapped global function
in C#, 320

implicit boxing and unboxing, 45–47

mixing managed/native classes/types, 318

native type thrown from native code, 352

using wrapper from C# assembly, 337

wrapper classes for unmanaged
resources, 163

wrapping global function, 319

wrapping MessageBoxClass, 334, 335

wrapping nonexception object, 267

Write method, Console class, 86

Write method, StreamWriter class, 87

WriteLine method, Console class, 81, 86

WriteLine method, StreamWriter class, 87

write-only properties, 22, 183

■X
x64 architecture, 32

xdcmake.exe tool, 359

XML documentation, 359–362

XML stream

Serializable attribute, 273

XmlSerializer

serialization attributes, 275

Hogenson_705-2INDEX.fm Page 412 Friday, October 27, 2006 3:19 PM

	C++/CLI: The Visual C++ Language for .NET
	Table of Content
	Chapter 1 Introducing C++/CLI
	Chapter 2 A Quick Tour of the C++/CLI Language Features
	Chapter 3 Building C++/CLI Programs for the .NET Developer Platform with Visual C++
	Chapter 4 Object Semantics in C++/CLI
	Chapter 5 Fundamental Types: Strings, Arrays, and Enums
	Chapter 6 Classes and Structs
	Chapter 7 Features of a .NET Class
	Chapter 8 Inheritance
	Chapter 9 Interfaces
	Chapter 10 Exceptions, Attributes, and Reflection
	Chapter 11 Parameterized Functions and Types
	Chapter 12 Interoperability
	Appendix A Quick Reference
	Index

